Đề bài
Rút gọn các biểu thức sau:
a) \(A = \left( {2{x^2} - 3x + 1} \right)\left( {{x^2} - 5} \right) - \left( {{x^2} - x} \right)\left( {2{x^2} - x - 10} \right)\);
b) \(B = \left( {x - 2} \right)\left( {{x^2} - 5x + 7} \right) - \left( {{x^2} - 3x} \right)\left( {x - 4} \right) - 5\left( {x - 2} \right)\).
Phương pháp giải - Xem chi tiết
Muốn một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải chi tiết
a) Đặt \(C = \left( {2{x^2} - 3x + 1} \right)\left( {{x^2} - 5} \right)\) và \(D = \left( {{x^2} - x} \right)\left( {2{x^2} - x - 10} \right)\), ta có \(A = C - D\).
Trước hết ta tính:
\(C = \left( {2{x^2} - 3x + 1} \right)\left( {{x^2} - 5} \right)\)
\( = \left( {2{x^2} - 3x + 1} \right).{x^2} - \left( {2{x^2} - 3x + 1} \right).5\)
\( = \left( {2{x^4} - 3{x^3} + {x^2}} \right) - \left( {10{x^2} - 15x + 5} \right)\)
\( = 2{x^4} - 3{x^3} + \left( {{x^2} - 10{x^2}} \right) + 15x - 5\)
\( = 2{x^4} - 3{x^3} - 9{x^2} + 15x - 5\)
\(D = \left( {{x^2} - x} \right)\left( {2{x^2} - x - 10} \right)\)
\( = {x^2}\left( {2{x^2} - x - 10} \right) - x\left( {2{x^2} - x - 10} \right)\)
\( = \left( {2{x^4} - {x^3} - 10{x^2}} \right) - \left( {2{x^3} - {x^2} - 10x} \right)\)
\( = 2{x^4} + \left( { - {x^3} - 2{x^3}} \right) + \left( {{x^2} - 10{x^2}} \right) + 10x\)
\( = 2{x^4} - 3{x^3} - 9{x^2} + 10x\)
Từ đó \(A = C - D = \left( {2{x^4} - 3{x^3} - 9{x^2} + 15x - 5} \right) - \left( {2{x^4} - 3{x^3} - 9{x^2} + 10x} \right)\)
\( = \left( {2{x^4} - 2{x^4}} \right) + \left( {3{x^3} - 3{x^3}} \right) + \left( {9{x^2} - 9{x^2}} \right) + \left( {15x - 10x} \right) - 5\)
\( = 5x - 5\)
b) Đặt \(E = \left( {x - 2} \right)\left( {{x^2} - 5x + 7} \right)\) và \(F = \left( {{x^2} - 3x} \right)\left( {x - 4} \right)\), ta có: \(B = E - F - 5\left( {x - 2} \right)\).
Trước hết ta tính:
\(E = \left( {x - 2} \right)\left( {{x^2} - 5x + 7} \right) = x\left( {{x^2} - 5x + 7} \right) - 2\left( {{x^2} - 5x + 7} \right)\)
\( = \left( {{x^3} - 5{x^2} + 7x} \right) - \left( {2{x^2} - 10x + 14} \right)\)
\( = {x^3} + \left( { - 5{x^2} - 2{x^2}} \right) + \left( {7x + 10x} \right) - 14\)
\( = {x^3} - 7{x^2} + 17x - 14\)
\(F = \left( {{x^2} - 3x} \right)\left( {x - 4} \right) = {x^2}\left( {x - 4} \right) - 3x\left( {x - 4} \right)\)
\( = \left( {{x^3} - 4{x^2}} \right) - \left( {3{x^2} - 12x} \right)\)
\( = {x^3} - \left( {4{x^2} + 3{x^2}} \right) + 12x\)
\( = {x^3} - 7{x^2} + 12x\)
Cuối cùng ta được:
\(B = E - F - 5\left( {x - 2} \right) = \left( {{x^3} - 7{x^2} + 17x - 14} \right) - \left( {{x^3} - 7{x^2} + 12x} \right) - 5\left( {x - 2} \right)\)
\(B = \left( {{x^3} - {x^3}} \right) + \left( {7{x^2} - 7{x^2}} \right) + \left( {17x - 12x - 5x} \right) + \left( {10 - 14} \right)\)
\(B = - 4\)