Đề bài
Áp dụng Bài 5, chứng tỏ rằng \(x = 3\) là một nghiệm của đa thức \(3{x^3} - 14{x^2} + 17x - 6\).
Phương pháp giải - Xem chi tiết
Nếu tại \(x = a\) (a là một số), giá trị của một đa thức bằng 0 thì ta gọi a (hay \(x = a\)) là một nghiệm của đa thức đó.
Lời giải chi tiết
Chia đa thức \(3{x^3} - 14{x^2} + 17x - 6\) cho \(x - 3\), ta được phép chia hết:
\(\left( {3{x^3} - 14{x^2} + 17x - 6} \right):\left( {x - 3} \right) = 3{x^2} - 5x + 2\)
Có nghĩa là \(3{x^3} - 14{x^2} + 17x - 6 = \left( {x - 3} \right)\left( {3{x^2} - 5x + 2} \right)\).
Theo kết quả Bài 5, ta suy ra \(x = 3\) là một nghiệm của đa thức \(3{x^3} - 14{x^2} + 17x - 6\).