Danh Mục

Giải bài 5.29 trang 87 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Cho ({u_n} = sqrt n left( {sqrt {n + 2} - sqrt {n - 1} } right)).

Đề bài

Cho \({u_n} = \sqrt n \left( {\sqrt {n + 2}  - \sqrt {n - 1} } \right)\). Khi đó \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}\) bằng

A.\( + \infty \)                         

B. 0                     

C. \(\frac{1}{2}\)                    

D. 1.

Phương pháp giải - Xem chi tiết

Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{n \to  + \infty } {u_n} = \mathop {\lim }\limits_{n \to  + \infty } \sqrt n \left( {\sqrt {n + 2}  - \sqrt {n + 1} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n \left( {\sqrt {n + 2}  - \sqrt {n + 1} } \right)\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n \left( {n + 2 - n - 1} \right)}}{{\sqrt {n + 2}  + \sqrt {n - 1} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n }}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{\sqrt {1 + \frac{2}{n}}  + \sqrt {1 + \frac{2}{n}} }} = \frac{1}{2}\end{array}\)

Đáp án C


© 2025 Luyện Thi 24/7. All Rights Reserved