Danh Mục

Giải bài 3 (9.34) trang 84 vở thực hành Toán 7 tập 2


Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Đề bài

Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Phương pháp giải - Xem chi tiết

+ Gọi tia đối của tia AC là tia Am.

+ Chỉ ra \(\widehat {{A_1}} = \widehat {{A_2}}\), \(\widehat {ABC} = \widehat {{A_2}},\widehat {ACB} = \widehat {{A_1}}\) nên \(\widehat {ABC} = \widehat {ACB}\).

Lời giải chi tiết

Gọi tia đối của tia AC là Am. Ta có tia At chia góc mAB thành hai góc \(\widehat {{A_1}}\) và \(\widehat {{A_2}}\), \(\widehat {{A_1}} = \widehat {{A_2}}\).

Vì At//BC nên ta có \(\widehat {ABC} = \widehat {{A_2}},\widehat {ACB} = \widehat {{A_1}}\).

Suy ra \(\widehat {ACB} = \widehat {{A_1}} = \widehat {{A_2}} = \widehat {ABC}\). Vậy ABC là tam giác cân tại A.


© 2025 Luyện Thi 24/7. All Rights Reserved