Danh Mục

Giải bài 19 trang 69 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Cho hình lập phương (ABCD cdot A'B'C'D') có cạnh bằng (a). Góc giữa hai đường thẳng (AC) và (BC') bằng

Đề bài

Cho hình lập phương \(ABCD \cdot A'B'C'D'\) có cạnh bằng \(a\). Góc giữa hai đường thẳng \(AC\) và \(BC'\) bằng

A. \({90^ \circ }\).

B. \({30^ \circ }\).

C. \({60^ \circ }\).

D. \({45^ \circ }\).

Phương pháp giải - Xem chi tiết

Phương pháp

Ta có \(AC//A'C' \Rightarrow \left( {AC,BC'} \right) = \left( {A'C',BC'} \right)\)

Nhận dạng tam giác \(BA'C'\) đều \( \Rightarrow \left( {A'C',BC'} \right) = {60^ \circ }\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có \(AC//A'C' \Rightarrow \left( {AC,BC'} \right) = \left( {A'C',BC'} \right)\)

Xét tam giác \(BA'C'\) có ba cạnh là ba đường chéo của 3 hình vuông bằng nhau nên tam giác \(BA'C'\) đều. Vậy \(\left( {AC,BC'} \right) = \left( {A'C',BC'} \right) = {60^ \circ }\)

Chọn C


© 2025 Luyện Thi 24/7. All Rights Reserved