Đề bài
Các dấu hiệu nhận biết sau, dấu hiệu nào không đủ để kết luận một hình vuông?
Khẳng định nào sau đây không là tính chất của hình vuông?
Định nghĩa đúng về hình vuông:
Hình vuông có bao nhiêu trục đối xứng?
Tứ giác nào sau đây vừa là hình chữ nhật, vừa là hình thoi?
Để chứng minh tứ giác ABCD là hình vuông, dấu hiệu nào sau đây là sai
Một hình vuông có độ dài đường chéo là 6cm. Độ dài cạnh hình vuông đó là
Một hình vuông có cạnh là 2dm. Độ dài đường chéo của hình vuông đó là:
2dm.
4dm
Một hình vuông có chu vi là 32 cm. Hỏi diện tích hình vuông nhận giá trị nào sau đây?
Một hình vuông có diện tích là 25\(c{m^2}\). Hỏi chu vi hình vuông nhận giá trị nào sau đây?
Chọn câu sai. Tứ giác nào có hai đường chéo bằng nhau.
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và MN // AC, NP // BD; \(MN = \frac{1}{2}AC,NP = \frac{1}{2}BD\). Hai đường chéo AC và BD cần thỏa mãn điều kiện gì để tứ giác MNPQ là hình vuông?
\(AC//BD\).
\(AC \bot BD,AC = BD\).
AC = BD.
AC // BD, AC = BD.
Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Qua Bvẽ đường thẳng song song với AC, qua C vẽ đường thẳng song song với BD, hai đường thẳng này cắt nhau ở K. Hình thoi ABCD Cần thỏa mãn điều kiện gì để tứ giác BOCK là hình vuông?
Cho hình vuông ABCD. Trên cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?
Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung điểm của AB, CD; EF // AD //BC. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE.Tứ giác EMFN là hình gì?
ho hình vuông ABCD. M là điểm nằm trong hình vuông. Gọi E, F lần lượt là hình chiếu của M trên cạnh AB và AD. Tứ giác AEMF là hình vuông khi.
Cho hình vuông ABCD cạnh 8 cm. M, N, P, Q là trung điểm các cạnh AB, BC, CD, DA. Tính diện tích tứ giác MNPQ.
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là các trung điểm của AB, BC, AC và \(AM = \frac{1}{2}AB{;^{}}AP = \frac{1}{2}AC\). Tam giác ABC cần có thêm điều kiện gì để hình chữ nhật AMNP là hình vuông?
Tam giác ABC vuông tại A. Trên các cạnh AB ,AC lấy các điểm D, E sao cho
BD = CE. Gọi I, K, M, N theo thứ tự là các điểm thuộc các cạnh DE, BE, CB, CD sao cho \(IK = MN = \frac{1}{2}BD,KM = IN = \frac{1}{2}CE\); IK // BD, IN //CE. Tứ giác IKMN là hình gì?
Cho tam giác ABC vuông cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi M, N, I, K theo thứ tự là các điểm thuộc các cạnh BD, BC, EC, ED sao cho
\(MN//CD,MN = \frac{1}{2}CD;KI//CD,KI = \frac{1}{2}CD;NI//BE,NI = \frac{1}{2}BE;MK//BE,MK = \frac{1}{2}BE\).Tứ giác MNIK là hình gì?
Lời giải và đáp án
Các dấu hiệu nhận biết sau, dấu hiệu nào không đủ để kết luận một hình vuông?
Đáp án : D
Câu A, B, C là các câu đúng theo dấu hiệu nhận biết hình vuông.
Câu D sai vì hình thoi có hai đường chéo vuông góc, hình thoi có hai đường chéo bằng nhau là hình vuông.
Khẳng định nào sau đây không là tính chất của hình vuông?
Đáp án : C
Câu A, B, D là các câu đúng theo tính chất hình vuông.
Câu C sai vì Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau là định nghĩa hình vuông.
Định nghĩa đúng về hình vuông:
Đáp án : D
Hình vuông có bao nhiêu trục đối xứng?
Đáp án : D
Tứ giác nào sau đây vừa là hình chữ nhật, vừa là hình thoi?
Đáp án : B
Vì theo tính chất hình vuông ta có: Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi.
Để chứng minh tứ giác ABCD là hình vuông, dấu hiệu nào sau đây là sai
Đáp án : C
Tứ giác ABCD hình thoi có hai đường chéo AC, BD vuông góc với nhau nhưng chưa thể kết luận được ABCD là hình vuông.
Một hình vuông có độ dài đường chéo là 6cm. Độ dài cạnh hình vuông đó là
Đáp án : A
Gọi cạnh của hình vuông là \(x,x > 0\). Áp dụng định lí Pytago ta có:
\({x^2} + {x^2} = {6^2} \Leftrightarrow 2{x^2} = 36 \Leftrightarrow x = \sqrt {18} \)
Một hình vuông có cạnh là 2dm. Độ dài đường chéo của hình vuông đó là:
2dm.
4dm
Đáp án : B
Gọi độ dài đường chéo của hình vuông là \(x,x > 0\). Áp dụng định lí Pytago ta có:
\({2^2} + {2^2} = {x^2} \\ {x^2} = 8 \\ x = 2\sqrt 2 \)
Một hình vuông có chu vi là 32 cm. Hỏi diện tích hình vuông nhận giá trị nào sau đây?
Đáp án : B
Cạnh của hình vuông là: 32 : 4 = 8 (\(c{m^2}\))
Diện tích của hình vuông là: 8 . 8 = 64 (\(c{m^2}\))
Một hình vuông có diện tích là 25\(c{m^2}\). Hỏi chu vi hình vuông nhận giá trị nào sau đây?
Đáp án : C
Chu vi của hình vuông là: 5.4 = 20 (cm)
Đáp án : D
Từ hình vẽ ta thấy hai đường chéo của tứ giác vuông góc và giao nhau tại trung điểm mỗi đường nên nó là hình thoi.
Hình thoi này có hai đường chéo bằng nhau nên nó là hình vuông
Đáp án : A
Từ hình vẽ ta thấy bốn cạnh của tứ giác này bằng nhau nên tứ giác này là hình thoi.
Hình thoi này có một góc vuông nên nó là hình vuông.
Chọn câu sai. Tứ giác nào có hai đường chéo bằng nhau.
Đáp án : D
Trong các hình: hình vuông, hình chữ nhật, hình thang cân, hình thoi thì hình thoi là hình có hai đường chéo không bằng nhau.
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và MN // AC, NP // BD; \(MN = \frac{1}{2}AC,NP = \frac{1}{2}BD\). Hai đường chéo AC và BD cần thỏa mãn điều kiện gì để tứ giác MNPQ là hình vuông?
\(AC//BD\).
\(AC \bot BD,AC = BD\).
AC = BD.
AC // BD, AC = BD.
Đáp án : B
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau nên tứ giác MNPQ là hình bình hành.
Để hình bình hành MNPQ là hình vuông thì \(\left\{ \begin{array}{l}MN \bot NP\\MN = NP\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}AC \bot BD\\AC = BD\end{array} \right.\)
Vì MN // AC, NP // BD nên \(AC \bot BD\)
Lại có: \(MN = \frac{1}{2}AC,NP = \frac{1}{2}BD\) nên AC = BD
Vậy để tứ giác MNPQ là hình vuông thì hai đường chéo AC và BD bằng nhau và vuông góc với nhau.
Hình bình hành có hai đường chéo bằng nhau và vuông góc với nhau.
Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Qua Bvẽ đường thẳng song song với AC, qua C vẽ đường thẳng song song với BD, hai đường thẳng này cắt nhau ở K. Hình thoi ABCD Cần thỏa mãn điều kiện gì để tứ giác BOCK là hình vuông?
Đáp án : A
Tứ giác BOCK có các cạnh đối song song nên tứ giác BOCK là hình bình hành.
Lại có: \(\widehat {BOC} = {90^0}\)(hai đường chéo của hình thoi vuông góc với nhau tại O)
\( \Rightarrow \)Tứ giác BOCK là hình chữ nhật.
Để hình chữ nhật BOCK là hình vuông thì BO = OC \( \Rightarrow \)BD =AC
\( \Rightarrow \)Hình thoi ABCD là hình vuông.
Cho hình vuông ABCD. Trên cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Tứ giác EFGH là hình gì?
Đáp án : D
Ta có: AH = BE = CF = DG
\( \Rightarrow \Delta AEH = \Delta BFE = \Delta CGF = \Delta DHG(c.g.c)\)
Do đó: EH = FE = GF = HG (1)
Lại có:\(\Delta AEH = \Delta BFE \Rightarrow \widehat {{\rm{BEF}}} = \widehat {AHE}\)
\(\begin{array}{l} \Rightarrow \widehat {AEH} + \widehat {{\rm{BEF}}} = {90^0}\\ \Rightarrow \widehat {FEH} = {90^0}(2)\end{array}\)
Từ (1) và (2) suy ra tứ giác EFGH là hình vuông.
Hình thoi có một góc vuông là hình vuông.
Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung điểm của AB, CD; EF // AD //BC. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE.Tứ giác EMFN là hình gì?
Đáp án : D
Vì EF // AD //BC
Và AE = FB = BC = CF = FD = DA
Lại có: AE // DF
\( \Rightarrow \)Tứ giác ADFE là hình bình hành (dhnb)
Lại có: \(\widehat A = {90^0}\)( ABCD là hình chữ nhật)
\( \Rightarrow \)Tứ giác ADFE là hình chữ nhật.
Mặt khác: \(AD = AE = \frac{1}{2}AB\)
\( \Rightarrow \) ADFE là hình vuông.
Chứng minh tương tự ta có BCFE là hình vuông
Do đó \(\Delta MEF\) và \(\Delta N{\rm{EF}}\) là hai tam giác vuông cân tại M, N
Suy ra tứ giác EMFN là hình vuông.
ho hình vuông ABCD. M là điểm nằm trong hình vuông. Gọi E, F lần lượt là hình chiếu của M trên cạnh AB và AD. Tứ giác AEMF là hình vuông khi.
Đáp án : A
Tứ giác AFME có: \(\widehat A = \widehat {AFM} = \widehat {A{\rm{E}}M} = {90^o}\) nên AEMF là hình chữ nhật
Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của góc \(\widehat {EAF}\)
Mà ta lại có: AC là phân giác \(\widehat {DAB}\) (do ABCD là hình vuông)
Nên suy ra M \( \in \) AC.
Cho hình vuông ABCD cạnh 8 cm. M, N, P, Q là trung điểm các cạnh AB, BC, CD, DA. Tính diện tích tứ giác MNPQ.
Đáp án : D
Vì ABCD là hình vuông và M, N, P, Q là trung điểm các cạnh AB, BC, CD, CA nên ta có AM = MB = BN = NC = CP = PD = DQ = QA = \(\frac{1}{2}\)AB = 4 cm
Từ đó: ΔAQM = ΔBMN = ΔCPN = ΔDQP (c – g – c)
Suy ra \({S_{QAM}} = {S_{MNB}} = {S_{CPN}} = {S_{DPQ}} = \frac{{DQ.DP}}{2} = \frac{{{8^2}}}{8} = 8\)
Lại có SABCD = 82 = 64.
Nên SMNPQ = SABCD – SAMQ – SMBN – SCPN – SDPQ = \({8^2} - 4.\frac{{{8^2}}}{8} = \frac{1}{2}{.8^2} = 32\)
Vậy SMNPQ = 32 cm2.
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là các trung điểm của AB, BC, AC và \(AM = \frac{1}{2}AB{;^{}}AP = \frac{1}{2}AC\). Tam giác ABC cần có thêm điều kiện gì để hình chữ nhật AMNP là hình vuông?
Đáp án : B
Hình chữ nhật AMNP là hình vuông ⇔ AM = AP
Vì: \(AM = \frac{1}{2}AB{;^{}}AP = \frac{1}{2}AC(gt)\) nên AM = AP ⇔ AB = AC
Vậy nếu tam giác ABC vuông cân tại A thì hình chữ nhật AMNP là hình vuông.
Tam giác ABC vuông tại A. Trên các cạnh AB ,AC lấy các điểm D, E sao cho
BD = CE. Gọi I, K, M, N theo thứ tự là các điểm thuộc các cạnh DE, BE, CB, CD sao cho \(IK = MN = \frac{1}{2}BD,KM = IN = \frac{1}{2}CE\); IK // BD, IN //CE. Tứ giác IKMN là hình gì?
Đáp án : A
Ta có: \(IK = MN = \frac{1}{2}BD,KM = IN = \frac{1}{2}CE\)
Mà BD = CE nên IK = KM = MN = IN (1)
Lại có: IK // BD, IN //CE
Mặt khác: \(BD \bot CE\)
\( \Rightarrow IK \bot IN(2)\)
Từ (1) và (2) suy ra IKMN là hình vuông.
Cho tam giác ABC vuông cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi M, N, I, K theo thứ tự là các điểm thuộc các cạnh BD, BC, EC, ED sao cho
\(MN//CD,MN = \frac{1}{2}CD;KI//CD,KI = \frac{1}{2}CD;NI//BE,NI = \frac{1}{2}BE;MK//BE,MK = \frac{1}{2}BE\).Tứ giác MNIK là hình gì?
Đáp án : C
Do đó tứ giác MNIK là hình vuông.
Ta có: \(\Delta ACD = \Delta ABE(c.g.c)\)
Suy ra: CD = BE
Lại có: \(\widehat {{C_1}} = \widehat {{B_1}}\)
Mặt khác: \(\widehat {{B_1}}\) phụ với \(\widehat {BEC}\) nên \(\widehat {{C_1}}\) phụ với \(\widehat {BEC}\)
Do đó: \(CD \bot BE\)
Theo đề bài ta có:
\(\begin{array}{l}MN//CD,MN = \frac{1}{2}CD\\KI//CD,KI = \frac{1}{2}CD\\NI//BE,NI = \frac{1}{2}BE\\MK//BE,MK = \frac{1}{2}BE\end{array}\)
Từ đó suy ra MN = NI = KI = MK và \(MN \bot MK\)
Do đó tứ giác MNIK là hình vuông.
Luyện tập và củng cố kiến thức Bài 6: Hình thoi Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Hình chữ nhật Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Hình bình hành Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Hình thang cân Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Tứ giác Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Định lí Pythagore Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết