1. Phương trình tham số và phương trình chính tắc của đường thẳng
Vecto chỉ phương của đường thẳng
Vecto \(\overrightarrow a \ne \overrightarrow 0 \) được gọi là vecto chỉ phương của đường thẳng d nếu giá của \(\overrightarrow a \) song song hoặc trùng với d. |
Ví dụ: Cho hình hộp ABCD.A′B′C′D′, đường thẳng d đi qua hai điểm A và C. Tìm bốn vecto có điểm đầu và điểm cuối trong các đỉnh của hình hộp đã cho và là vecto chỉ phương của d.
Giải:
Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {CA} \) có giá trị trùng với d, hai vectơ \(\overrightarrow {A'C'} \) và \(\overrightarrow {C'A'} \) có giá song song với d (do AC//A′C′).
Vậy ta có bốn vectơ chỉ phương của đường thẳng d là \(\overrightarrow {AC} \), \(\overrightarrow {CA} \), \(\overrightarrow {A'C'} \), \(\overrightarrow {C'A'} \).
Phương trình tham số của đường thẳng
Trong không gian Oxyz, cho đường thẳng d đi qua điểm \({M_0}({x_0};{y_0};{z_0})\) và có vecto chỉ phương \(\overrightarrow a = ({a_1};{a_2};{a_3})\). Hệ phương trình: \(\left\{ \begin{array}{l}x = {x_0} + {a_1}t\\y = {y_0} + {a_2}t\\z = {z_0} + {a_3}t\end{array} \right.\) được gọi là phương trình tham số của đường thẳng d (t là tham số, \(t \in R\)). |
Ví dụ: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M(2;−2;1) và có vectơ chỉ phương là \(\overrightarrow a = (1; - 1;2)\).
a) Viết phương trình tham số của đường thẳng d.
b) Trong hai điểm A(3;−3;3) và B(1;−1;1), điểm nào thuộc d?
Giải
a) Phương trình tham số của d là \(\left\{ \begin{array}{l}x = 2 + t\\y = - 2 - t\\z = 1 + 2t\end{array} \right.\) \((t \in \mathbb{R})\).
b) Điểm \({M_0}({x_0};{y_0};{z_0})\) thuộc đường thẳng d khi và chỉ khi có giá trị t thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}{x_0} = 2 + t\\{y_0} = - 2 - t\\{z_0} = 1 + 2t\end{array} \right.\).
Ta có:
Với A(3;−3;3), ta xét \(\left\{ \begin{array}{l}3 = 2 + t\\ - 3 = - 2 - t\\3 = 1 + 2t\end{array} \right.\). Hệ phương trình này có nghiệm duy nhất t = 1 nên A thuộc đường thẳng d.
Với B(1;−1;1), ta xét \(\left\{ \begin{array}{l}1 = 2 + t\\ - 1 = - 2 - t\\1 = 1 + 2t\end{array} \right.\). Hệ phương trình này vô nghiệm nên B không thuộc d.
Phương trình chính tắc của đường thẳng
Trong không gian Oxyz, cho đường thẳng d đi qua điểm \({M_0}({x_0};{y_0};{z_0})\) và có vecto chỉ phương \(\overrightarrow a = ({a_1};{a_2};{a_3})\) với \({a_1}\), \({a_2}\), \({a_3}\) đều khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\) được gọi là phương trình chính tắc của đường thẳng d. |
Ví dụ: Trong không gian Oxyz, viết phương trình chính tắc của đường thẳng d, biết:
a) Đường thẳng d đi qua điểm M(4;2;−1) và có vectơ chỉ phương \(\overrightarrow a = ( - 1; - 4;3)\).
b) Đường thẳng d có phương trình tham số là \(\left\{ \begin{array}{l}x = 2 - t\\y = - 1 + 2t\\z = 3 - 3t\end{array} \right.\) \((t \in \mathbb{R})\).
Giải:
a) Phương trình chính tắc của đường thẳng d là \(\frac{{x - 4}}{{ - 1}} = \frac{{y - 2}}{{ - 4}} = \frac{{z + 1}}{3}\).
b)
Cách 1: Từ phương trình tham số của d, ta có đồ thị qua điểm M(2;−1;3) và có một vectơ chỉ phương \(\overrightarrow a = ( - 1;2; - 3)\).
Suy ra, phương trình chính tắc của d là \(\frac{{x - 2}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z - 3}}{{ - 3}}\).
Cách 2: Từ phương trình tham số của dd, tính theo x , y, z, ta có \(\left\{ \begin{array}{l}t = \frac{{x - 2}}{{ - 1}}\\t = \frac{{y + 1}}{2}\\t = \frac{{z - 3}}{{ - 3}}\end{array} \right.\).
Vậy \(\frac{{x - 2}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z - 3}}{{ - 3}}\). Đây là phương trình chính tắc của d.
Phương trình đường thẳng đi qua hai điểm
Trong không gian Oxyz, cho hai điểm phân biệt \(A({x_A};{y_A};{z_A})\) và \(B({x_B};{y_B};{z_B})\). + Đường thẳng AB có phương trình tham số là \(\left\{ \begin{array}{l}x = {x_A} + ({x_B} - {x_A})t\\y = {y_A} + ({y_B} - {y_A})t\\z = {z_A} + ({z_B} - {z_A})t\end{array} \right.\) \((t \in R)\). + Nếu \({x_A} \ne {x_B},{y_A} \ne {y_B},{z_A} \ne {z_B}\) thì đường thẳng AB có phương trình chính tắc là: \(\frac{{x - {x_A}}}{{{x_B} - {x_A}}} = \frac{{y - {y_A}}}{{{y_B} - {y_A}}} = \frac{{z - {z_A}}}{{{z_B} - {z_A}}}\). |
Ví dụ: Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua hai điểm A(4; 2; -1) và B(3; -2; 2).
Giải:
Phương trình tham số của AB là:
\(\left\{ \begin{array}{l}x = 4 + (3 - 4)t\\y = 2 + ( - 2 - 2)t\\z = - 1 + (2 + 1)t\end{array} \right.\) \((t \in R)\) hay \(\left\{ \begin{array}{l}x = 4 - t\\y = 2 - 4t\\z = - 1 + 3t\end{array} \right.\) \((t \in R)\).
Phương trình chính tắc của đường thẳng AB là:
\(\frac{{x - 4}}{{3 - 4}} = \frac{{y - 2}}{{ - 2 - 2}} = \frac{{z - ( - 1)}}{{2 - ( - 1)}}\) hay \(\frac{{x - 4}}{{ - 1}} = \frac{{y - 2}}{{ - 4}} = \frac{{z + 1}}{3}\).
2. Vị trí tương đối giữa hai đường thẳng trong không gian. Điều kiện để hai đường thẳng vuông góc trong không gian
Trong không gian Oxyz, cho hai đường thẳng
d: \(\left\{ \begin{array}{l}x = {x_0} + {a_1}t\\y = {y_0} + {a_2}t\\z = {z_0} + {a_3}t\end{array} \right.\) có vecto chỉ phương \(\overrightarrow a = ({a_1};{a_2};{a_3})\) và \({M_0}({x_0};{y_0};{z_0}) \in d\);
d’: \(\left\{ \begin{array}{l}x = {x_0}' + {a_1}'t'\\y = {y_0}' + {a_2}'t'\\z = {z_0}' + {a_3}'t'\end{array} \right.\) có vecto chỉ phương \(\overrightarrow {a'} = ({a_1}';{a_2}';{a_3}')\).
Khi đó:
+ d//d’ khi và chỉ khi \(\overrightarrow a \) cùng phương với \(\overrightarrow {a'} \) và \({M_0} \notin d'\). + d trùng d’ khi và chỉ khi \(\overrightarrow a \) cùng phương với \(\overrightarrow {a'} \) và \({M_0} \in d'\). + d cắt d’ khi và chỉ hệ phương trình ẩn t, t’ sau: \(\left\{ \begin{array}{l}{x_0} + {a_1}t = {x_0}' + {a_1}'t'\\{y_0} + {a_2}t = {y_0}' + {a_2}'t'\\{z_0} + {a_3}t = {z_0}' + {a_3}'t'\end{array} \right.\) có đúng một nghiệm. + d và d’ chéo nhau khi và chỉ khi \(\overrightarrow a \) không cùng phương với \(\overrightarrow {a'} \) và hệ: \(\left\{ \begin{array}{l}{x_0} + {a_1}t = {x_0}' + {a_1}'t'\\{y_0} + {a_2}t = {y_0}' + {a_2}'t'\\{z_0} + {a_3}t = {z_0}' + {a_3}'t'\end{array} \right.\) vô nghiệm. |
Lưu ý:
- Khi xét vị trí tương đối của hai đường thẳng, người ta thường xét tính cùng phương của hai vectơ chỉ phương của hai đường thẳng đó:
+ Nếu hai vectơ chỉ phương cùng phương thì hai đường thẳng đó song song hoặc trùng nhau.
+ Nếu hai vectơ chỉ phương không cùng phương thì hai đường thẳng đó cắt nhau hoặc chéo nhau.
- Ta có thể sử dụng tích có hướng và tích vô hướng để xét vị trí tương đối của hai đường thẳng. Chẳng hạn: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M, có vectơ chỉ phương \(\overrightarrow a \) và đường thẳng d′ đi qua điểm M′, có vectơ chỉ phương \(\overrightarrow {a'} \). Khi \(\left[ {\overrightarrow a ,\overrightarrow {a'} } \right] \ne \overrightarrow 0 \):
+ Nếu \(\left[ {\overrightarrow a ,\overrightarrow {a'} } \right].\overrightarrow {MM'} = 0\) thì d và d′ cắt nhau.
+ Nếu \(\left[ {\overrightarrow a ,\overrightarrow {a'} } \right].\overrightarrow {MM'} \ne 0\) thì d và d′ chéo nhau.
Ví dụ: Trong không gian Oxyz, xét vị trí tương đối của các cặp đường thẳng sau:
a) d: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 3 - t\end{array} \right.\) \((t \in R)\) hay d’: \(\left\{ \begin{array}{l}x = 2 + 2t'\\y = 3 + 4t'\\z = 5 - 2t'\end{array} \right.\) \((t' \in R)\).
b) d: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 + 3t\\z = 5 + t\end{array} \right.\) \((t \in R)\) hay d’: \(\frac{{x - 1}}{3} = \frac{{y + 2}}{2} = \frac{{z + 1}}{2}\).
c) d: \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và d’: \(\frac{{x - 1}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{{ - 2}}\).
Giải:
a) Ta có các vectơ chỉ phương của d và d′ lần lượt là \(\overrightarrow a = (1;2; - 1)\) và \(\overrightarrow {a'} = (2;4; - 2)\).
Vì \(\overrightarrow {a'} = 2\overrightarrow a \) nên \(\overrightarrow a \) và \(\overrightarrow {a'} \) cùng phương. Từ đó suy ra d và d′ song song với nhau hoặc trùng nhau.
Xét điểm \(M\left( {1;0;3} \right) \in d\), ta có \(M \notin d'\) nên d//d′.
b) Ta có d và d′ lần lượt nhận \(\overrightarrow a = \left( {2;3;1} \right)\;\) và \(\overrightarrow {a'} = \left( {3;2;2} \right)\;\) là các vectơ chỉ phương.
Vì \(\overrightarrow a \) và \(\overrightarrow {a'} \) không cùng phương nên d và d′ cắt nhau hoặc chéo nhau.
Có d′ đi qua M(1;2;−1) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {3;2;2} \right)\;\) nên có phương trình tham số là d’: \(\left\{ \begin{array}{l}x = 1 + 3t'\\y = - 2 + 2t'\\z = - 1 + 2t'\end{array} \right.\) \((t' \in R)\).
Xét hệ phương trình: \(\left\{ \begin{array}{l}1 + 2t = 1 + 3t'\\ - 1 + 3t = - 2 + 2t'\\5 + t = - 1 + 2t'\end{array} \right.\) ta không tìm được giá trị t, t’ thỏa mãn cả ba phương trình của hệ. Ta suy ra hệ trên vô nghiệm.
Vậy d và d’ chéo nhau.
c) Ta có: d đi qua M(0;1;0) và có vectơ chỉ phương \(\overrightarrow a = \left( {1; - 1;2} \right)\).
d′ đi qua M′(1;2;−2) và có vectơ chỉ phương \(\overrightarrow {a'} = (5;1; - 2)\).
Nên phương trình tham số của d và d′ lần lượt là:
d: \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 2t\end{array} \right.\) \((t \in R)\) và d’: \(\left\{ \begin{array}{l}x = 1 + 5t'\\y = 2 + t'\\z = - 2 - 2t'\end{array} \right.\) \((t' \in R)\).
Xét hệ phương trình: \(\left\{ \begin{array}{l}t = 1 + 5t'\\1 - t = 2 + t'\\2t = - 2 - 2t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t - 5t' = 1\\ - t - t' = 2\\2t + 2t' = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - \frac{2}{3}\\t' = - \frac{1}{3}\end{array} \right.\).
Hệ phương trình trên có đúng một nghiệm, nên d và d’ cắt nhau.
Điều kiện để hai đường thẳng vuông góc
Trong không gian Oxyz, cho hai đường thẳng d và d’ tương ứng có vecto chỉ phương \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow {a'} = ({a_1}';{a_2}';{a_3}')\). Khi đó: \(d \bot d' \Leftrightarrow \overrightarrow a \cdot \overrightarrow {a'} = 0 \Leftrightarrow {a_1}{a_1}' + {a_2}{a_2}' + {a_3}{a_3}' = 0\). |
Ví dụ: Trong không gian Oxyz, chứng minh hai đường thẳng sau đây vuông góc với nhau:
d': \(\left\{ \begin{array}{l}x = 5 - t\\y = - 3 + 2t\\z = 4t\end{array} \right.\) \((t \in R)\) và d’: \(\frac{{x - 9}}{2} = \frac{{y - 13}}{3} = \frac{{z - 1}}{{ - 1}}\).
Giải:
d và d’ lần lượt có vecto chỉ phương là \(\overrightarrow a = \left( { - 1;2;4} \right)\;\) và \(\overrightarrow {a'} = \left( {2;3; - 1} \right)\;\).
Ta có \(\overrightarrow a .\overrightarrow {a'} = - 2 + 6 - 4 = 0\) Suy ra \(\overrightarrow a \bot \overrightarrow {a'} \). Vậy \(d \bot d'\).