Danh Mục

Giải bài tập 8 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo


Tính góc giữa hai đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 5}}{4} = \frac{{z - 7}}{2}\) và \(d':\frac{{x - 1}}{3} = \frac{{y + 7}}{3} = \frac{{z - 12}}{6}\).

Đề bài

Tính góc giữa hai đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 5}}{4} = \frac{{z - 7}}{2}\) và \(d':\frac{{x - 1}}{3} = \frac{{y + 7}}{3} = \frac{{z - 12}}{6}\).

Phương pháp giải - Xem chi tiết

Chỉ ra các vectơ chỉ phương \(\vec a\) và \(\vec a'\) lần lượt của hai đường thẳng \(d\) và \(d'\), sau đó sử dụng công thức \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right|\).

Lời giải chi tiết

Đường thẳng \(d\) có vectơ chỉ phương là \(\vec a = \left( {2;4;2} \right)\).

Đường thẳng \(d'\) có vectơ chỉ phương là \(\vec a' = \left( {3;3;6} \right)\).

Ta có \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right| = \frac{{\left| {2.3 + 4.3 + 2.6} \right|}}{{\sqrt {{2^2} + {4^2} + {2^2}} .\sqrt {{3^2} + {3^2} + {6^2}} }} = \frac{5}{6}\).

Suy ra \(\left( {d,d'} \right) \approx {33^o}33'\).


© 2025 Luyện Thi 24/7. All Rights Reserved