Danh Mục

Giải bài 47 trang 26 sách bài tập toán 12 - Cánh diều


Cho hình phẳng giới hạn bởi đồ thị hàm số (y = x), trục hoành và hai đường thẳng (x = 0,x = 2) quay quanh trục (Ox) được khối tròn xoay có thể tích tính theo công thức là: A. (intlimits_0^2 {xdx} ). B. (pi intlimits_0^2 {{x^2}dx} ). C. (intlimits_0^2 {{x^2}dx} ). D. (pi intlimits_0^2 {xdx} ).

Đề bài

Cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x\), trục hoành và hai đường thẳng \(x = 0,x = 2\) quay quanh trục \(Ox\) được khối tròn xoay có thể tích tính theo công thức là:

A. \(\int\limits_0^2 {xdx} \).

B. \(\pi \int\limits_0^2 {{x^2}dx} \).

C. \(\int\limits_0^2 {{x^2}dx} \).

D. \(\pi \int\limits_0^2 {xdx} \).

Phương pháp giải - Xem chi tiết

Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) quay quanh trục \(Ox\) là: \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

Lời giải chi tiết

Thể tích khối tròn xoay được tính theo công thức: \(V = \pi \int\limits_0^2 {{x^2}dx} \).

Chọn B.


© 2025 Luyện Thi 24/7. All Rights Reserved