Danh Mục

Bài 90 trang 20 SBT toán 9 tập 1


Giải bài 90 trang 20 sách bài tập toán 9. Chứng minh các bất đẳng thức sau...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các bất đẳng thức sau:

LG câu a

\(\root 3 \of {{a^3}b}  = a\root 3 \of b \)

Phương pháp giải:

Áp dụng: 

\({\left( {\sqrt[3]{a}} \right)^3} = a\); \(\sqrt[3]{{{a^3}}} = a\)

\(\sqrt[3]{{ab}} = \sqrt[3]{a}.\sqrt[3]{b};\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}(b \ne 0)\) 

Lời giải chi tiết:

Ta có: \(\root 3 \of {{a^3}b}  = \root 3 \of {{a^3}} .\root 3 \of b  = a\root 3 \of b \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

LG câu b

\(\sqrt[3]{{\dfrac{a}{{{b^3}}}}} = \dfrac{1}{b}\sqrt[3]{{ab}}\)  (\(b \ne 0)\))

Phương pháp giải:

Áp dụng: 

\({\left( {\sqrt[3]{a}} \right)^3} = a\); \(\sqrt[3]{{{a^3}}} = a\)

\(\sqrt[3]{{ab}} = \sqrt[3]{a}.\sqrt[3]{b};\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}(b \ne 0)\) 

Lời giải chi tiết:

Ta có: với \((b \ne 0)\) 

\(\sqrt[3]{{\dfrac{a}{{{b^2}}}}} = \sqrt[3]{{\dfrac{{ab}}{{{b^3}}}}} = \dfrac{{\sqrt[3]{{ab}}}}{{\sqrt[3]{{{b^3}}}}} = \dfrac{1}{b}\sqrt[3]{{ab}}\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.  

 Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved