Bài 1: Tổng các góc trong một tam giác
Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3: Hai tam giác bằng nhau
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc
Bài 7: Tam giác cân
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Bài 1: Tổng các góc trong một tam giác
Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3: Hai tam giác bằng nhau
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc
Bài 7: Tam giác cân
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Đề bài
Ở Hình 16 có \(\widehat {xOz} = 40^\circ ,\widehat {xOy} = 80^\circ \). Tia Oz có là tia phân giác của góc xOy hay không?

Phương pháp giải - Xem chi tiết
Tia Oz là tia phân giác của góc xOy khi \(\widehat{xOz}=\widehat{yOz}=\dfrac{1}{2}.\widehat{xOy}\)
Lời giải chi tiết
Ta có: \(\widehat {zOy} = \widehat {xOy} - \widehat {xOz} = 80^\circ - 40^\circ = 40^\circ \)
Ta được: \(\widehat {zOy}= \widehat {xOz}=\dfrac{1}{2}.\widehat{xOy}\).
Vậy tia Oz là tia phân giác của góc xOy.
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.