Danh Mục

Giải bài 77 trang 37 sách bài tập toán 12 - Cánh diều


Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{a{x^2} + bx + c}}{{x + n}}) có đồ thị là đường cong ở Hình 21. a) (n < 0). b) (a > 0). c) (c > 0). d) (b < 0).

Đề bài

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{x + n}}\) có đồ thị là đường cong ở Hình 21.

a) \(n < 0\).

b) \(a > 0\).

c) \(c > 0\).

d) \(b < 0\).

Phương pháp giải - Xem chi tiết

‒ Xét các đường tiệm cận của đồ thị hàm số.

‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.

Lời giải chi tiết

• Tiệm cận đứng của đồ thị là đường thẳng \(x =  - n\) nằm bên trái trục tung nên \( - n < 0\) hay \(n > 0\). Vậy a) sai.

• Tiệm cận xiên có hệ số góc là \(a\) có hướng đi lên từ trái sang phải nên \(a > 0\). Vậy b) đúng.

• Đồ thị cắt trục tung tại điểm \(\left( {0;\frac{c}{n}} \right)\) nằm phía trên trục hoành nên \(\frac{c}{n} > 0\). Do \(n > 0\) nên \(c > 0\). Vậy c) đúng.

• Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) là hai nghiệm âm phân biệt. Do đó, \( - \frac{b}{a} < 0 \Leftrightarrow \frac{b}{a} > 0\). Do \(a > 0\) nên \(b > 0\). Vậy d) sai.

a) S.                                  

b) Đ.                                  

c) Đ.                                  

d) S.


© 2025 Luyện Thi 24/7. All Rights Reserved