Danh Mục

Giải bài 6.7 trang 11 SGK Toán 8 tập 2 - Kết nối tri thức


Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.

Đề bài

Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng. 

\(a)\frac{{{{\left( {x - 2} \right)}^3}}}{{{x^2} - 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{2}\)

\(b)\frac{{1 - x}}{{ - 5{\rm{x}} - 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Nhân cả tử và mẫu của phân thức với x – 2

b) Nhân cả tử và mẫu của phân thức với -1 

Lời giải chi tiết

a) Nhân cả tử và mẫu của phân thức \(\frac{{{{\left( {x - 2} \right)}^2}}}{x}\) với x – 2 ta có:

\(\frac{{{{\left( {x - 2} \right)}^2}}}{x} = \frac{{\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}{{x\left( {x - 2} \right)}} = \frac{{{x^3} - 6{{\rm{x}}^2} + 12{\rm{x}} - 8}}{{x\left( {x - 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^3}}}{{{x^2} - 2}}\)

b) Nhân cả tử và mẫu của phân thức \(\frac{{1 - x}}{{ - 5{\rm{x}} + 1}}\) với -1 ta được:

\(\frac{{1 - x}}{{ - 5{\rm{x}} + 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)


© 2025 Luyện Thi 24/7. All Rights Reserved