Danh Mục

Giải bài 6.16 trang 46 sách bài tập toán 12 - Kết nối tri thức


Tung hai con xúc xắc cân đối. Biết rằng tổng số chấm xuất hiện trên con xúc xắc bằng 8. Xác suất để ít nhất có một con xúc xắc xuất hiện mặt 3 chấm là A. (frac{2}{5}). B. (frac{3}{5}). C. (frac{3}{7}). D. (frac{4}{7}).

Đề bài

Tung hai con xúc xắc cân đối. Biết rằng tổng số chấm xuất hiện trên con xúc xắc bằng 8. Xác suất để ít nhất có một con xúc xắc xuất hiện mặt 3 chấm là

A. \(\frac{2}{5}\).

B. \(\frac{3}{5}\).

C. \(\frac{3}{7}\).

D. \(\frac{4}{7}\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức xác suất có điều kiện.

Lời giải chi tiết

Gọi A là biến cố: “Ít nhất có một con xúc xắc xuất hiện mặt 3 chấm”;

      B là biến cố: “Tổng số chấm xuất hiện trên con xúc xắc bằng 8”.

Ta cần tính \(P\left( {A|B} \right)\).

Ta có \(B = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\).

Suy ra \(AB = A \cap B = \left\{ {\left( {3,5} \right),\left( {5,3} \right)} \right\}\). Từ đó \(n\left( B \right) = 5,n\left( {AB} \right) = 2\).

Do đó \(P\left( B \right) = \frac{5}{{36}},P\left( {AB} \right) = \frac{2}{{36}}\).

Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{5}\).

Vậy ta chọn đáp án A.


© 2025 Luyện Thi 24/7. All Rights Reserved