Danh Mục

Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều


Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\). B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\). C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường

Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?

A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x =  - 2\).

B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y =  - 2\) và tiệm cận ngang là đường thẳng \(x = 2\).

C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường thẳng \(y =  - 2\).        

D. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 2\) và tiệm cận ngang là đường thẳng \(y = 2\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Dựa vào bảng biến thiên ta có:

• \(\mathop {\lim }\limits_{x \to  - {2^ - }} f\left( x \right) =  + \infty \).

Vậy \(x =  - 2\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2\).

Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

Chọn D.


© 2025 Luyện Thi 24/7. All Rights Reserved