Đề bài
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 3y - z - 1 = 0\) và điểm \(A\left( {1;2; - 1} \right)\). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là
A. \(\frac{{x + 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 1}}{{ - 1}}\).
B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 1}}\).
D. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{{ - 1}}\).
Phương pháp giải - Xem chi tiết
Viết phương trình chính tắc của d với d đi qua A và nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương.
Lời giải chi tiết
Vectơ pháp tuyến của d là \(\overrightarrow n = \left( {2;3; - 1} \right)\). Do d vuông góc với mặt phẳng (P) nên d nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương.
Suy ra phương trình chính tắc của d là \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).
Vậy ta chọn đáp án B.