Danh Mục

Bài 4.5 trang 156 SBT đại số và giải tích 11


Giải bài 4.5 trang 156 sách bài tập đại số và giải tích 11. Tính các giới hạn sau :...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn sau

LG a

\(\lim \left( {{n^2} + 2n - 5} \right)\)

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của \(n\) ra làm nhân tử chung và sử dụng các giới hạn \(0\)

Lời giải chi tiết:

\(\lim \left( {{n^2} + 2n - 5} \right)\) \( = \lim {n^2}\left( {1 + \dfrac{2}{n} - \dfrac{5}{{{n^2}}}} \right)\) \( =  + \infty \).

Vì \(\lim {n^2} =  + \infty \) và \(\lim \left( {1 + \dfrac{2}{n} - \dfrac{5}{{{n^2}}}} \right) \) \(= 1 + 0 - 0 = 1>0\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(\lim \left( { - {n^3} - 3{n^2} - 2} \right)\)

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của \(n\) ra làm nhân tử chung và sử dụng các giới hạn \(0\).

Lời giải chi tiết:

\(\lim \left( { - {n^3} - 3{n^2} - 2} \right)\) \( = \lim \left[ { - {n^3}\left( {1 + \dfrac{3}{n} + \dfrac{2}{{{n^3}}}} \right)} \right] =  - \infty \)

Vì \(\lim \left( { - {n^3}} \right) =  - \infty \) và \(\lim \left( {1 + \dfrac{3}{n} + \dfrac{2}{{{n^3}}}} \right)\) \( = 1 + 0 + 0 = 1 > 0\).

LG c

\(\lim \left[ {{4^n} + {{\left( { - 2} \right)}^n}} \right]\)

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của \(n\) ra làm nhân tử chung và sử dụng các giới hạn \(0\).

Lời giải chi tiết:

\(\lim \left[ {{4^n} + {{\left( { - 2} \right)}^n}} \right]\) \( = \lim {4^n}\left[ {1 + {{\left( { - \dfrac{2}{4}} \right)}^n}} \right] =  + \infty \).

Vì \(\lim {4^n} =  + \infty \) và \(\lim \left[ {1 + {{\left( { - \dfrac{2}{4}} \right)}^n}} \right]\) \( = 1 + 0 = 1 > 0\).

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved