Danh Mục

Giải bài 4.29 trang 71 SGK Toán 10 – Kết nối tri thức


Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?

Đề bài

Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?

A. \(\overrightarrow a  = (1;1)\)

B. \(\overrightarrow b  = (1; - 1)\)

C. \(\overrightarrow c  = \left( {2;\frac{1}{2}} \right)\)

D. \(\overrightarrow d  = \left( {\dfrac{1}{{\sqrt 2 }};\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\)

Phương pháp giải - Xem chi tiết

Tính độ dài vectơ \(\overrightarrow a \;(x;y)\) theo công thức: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \).

Lời giải chi tiết

A. Ta có: \(\overrightarrow a  = (1;1) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{1^2} + {1^2}}  = \sqrt 2  \ne 1\). (Loại)

B. Ta có: \(\overrightarrow b  = (1; - 1) \Rightarrow \;|\overrightarrow b |\; = \sqrt {{1^2} + {{( - 1)}^2}}  = \sqrt 2  \ne 1\). (Loại)

C. Ta có: \(\overrightarrow c  = \left( {2;\dfrac{1}{2}} \right) \Rightarrow \;|\overrightarrow c |\; = \sqrt {{2^2} + {{\left( {\dfrac{1}{2}} \right)}^2}}  = \dfrac{{\sqrt {17} }}{2} \ne 1\). (Loại)

D. Ta có: \(\overrightarrow d  = \left( {\dfrac{1}{{\sqrt 2 }};\frac{{ - 1}}{{\sqrt 2 }}} \right) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{11}}{{\sqrt 2 }}} \right)}^2}}  = 1\). (Thỏa mãn yc)

Chọn D


© 2025 Luyện Thi 24/7. All Rights Reserved