Danh Mục

Bài 4.23 trang 165 SBT đại số và giải tích 11


Giải bài 4.23 trang 165 sách bài tập đại số và giải tích 11. Tính các giới hạn sau :...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn sau

LG a

\(\mathop {\lim }\limits_{x \to  - 3} {{x + 3} \over {{x^2} + 2x - 3}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - 3} {{x + 3} \over {{x^2} + 2x - 3}} = \mathop {\lim }\limits_{x \to  - 3} {{x + 3} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} = \mathop {\lim }\limits_{x \to  - 3} {1 \over {x - 1}} = {{ - 1} \over 4}\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(\mathop {\lim }\limits_{x \to  + \infty } {{x - 1} \over {{x^2} - 1}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } {{x - 1} \over {{x^2} - 1}} = \mathop {\lim }\limits_{x \to  + \infty } {{{1 \over x} - {1 \over {{x^2}}}} \over {1 - {1 \over {{x^2}}}}} = 0\)

LG c

\(\mathop {\lim }\limits_{x \to 5} {{x - 5} \over {\sqrt x  - \sqrt 5 }}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 5} {{x - 5} \over {\sqrt x  - \sqrt 5 }}\)

\(= \mathop {\lim }\limits_{x \to 5} {{\left( {\sqrt x  - \sqrt 5 } \right)\left( {\sqrt x  + \sqrt 5 } \right)} \over {\sqrt x  - \sqrt 5 }}\)

\(= \mathop {\lim }\limits_{x \to 5} \left( {\sqrt x  + \sqrt 5 } \right) = 2\sqrt 5 \)

LG d

\(\mathop {\lim }\limits_{x \to  + \infty }  {{x - 5} \over {\sqrt x  + \sqrt 5 }}\)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{x - 5} \over {\sqrt x + \sqrt 5 }} \cr 
& = \mathop {\lim }\limits_{x \to + \infty } {{1 - {5 \over x}} \over {{1 \over {\sqrt x }} + {{\sqrt 5 } \over x}}} = + \infty \cr} \)  

(Vì \({1 \over {\sqrt x }} + {{\sqrt 5 } \over x} > 0\) với mọi \(x > 0\) )

LG e

\(\mathop {\lim }\limits_{x \to 1} {{\sqrt x  - 1} \over {\sqrt {x + 3}  - 2}}\)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to 1} {{\sqrt x - 1} \over {\sqrt {x + 3} - 2}} \cr 
& = \mathop {\lim }\limits_{x \to 1} {{\left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)} \over {x + 3 - 4}} \cr 
& = \mathop {\lim }\limits_{x \to 1} {{\left( {\sqrt {x - 1} } \right)\left( {\sqrt {x + 3} + 2} \right)} \over {x - 1}} \cr 
& = \mathop {\lim }\limits_{x \to 1} {{\left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)} \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} \cr 
& = \mathop {\lim }\limits_{x \to 1} {{\sqrt {x + 3} + 2} \over {\sqrt x + 1}} = 2 \cr} \)

LG f

\(\mathop {\lim }\limits_{x \to  + \infty } {{1 - 2x + 3{x^3}} \over {{x^3} - 9}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } {{1 - 2x + 3{x^3}} \over {{x^3} - 9}} = \mathop {\lim }\limits_{x \to  + \infty } {{{1 \over {{x^3}}} - {2 \over {{x^2}}} + 3} \over {1 - {9 \over {{x^3}}}}} = 3\)

LG g

\(\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\left( {{1 \over {{x^2} + 1}} - 1} \right)\)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\left( {{1 \over {{x^2} + 1}} - 1} \right) \cr 
& = \mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}.\left( {{{ - {x^2}} \over {{x^2} + 1}}} \right) \cr 
& = \mathop {\lim }\limits_{x \to 0} {{ - 1} \over {{x^2} + 1}} = - 1 \cr} \)

LG h

\(\mathop {\lim }\limits_{x \to  - \infty } {{\left( {{x^2} - 1} \right){{\left( {1 - 2x} \right)}^5}} \over {{x^7} + x + 3}}\)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{\left( {{x^2} - 1} \right){{\left( {1 - 2x} \right)}^5}} \over {{x^7} + x + 3}} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } {{{x^2}\left( {1 - {1 \over {{x^2}}}} \right).{x^5}{{\left( {{1 \over x} - 2} \right)}^5}} \over {{x^7} + x + 3}} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } {{\left( {1 - {1 \over {{x^2}}}} \right){{\left( {{1 \over x} - 2} \right)}^5}} \over {1 + {1 \over {{x^6}}} + {3 \over {{x^7}}}}} \cr 
& = {\left( { - 2} \right)^5} = - 32 \cr}\)

 Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved