Danh Mục

Bài 3.57 trang 183 SBT giải tích 12


Giải bài 3.57 trang 183 sách bài tập giải tích 12. Khẳng định nào sau đây sai?...

Đề bài

Khẳng định nào sau đây sai?

A. \(\displaystyle  \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  < \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \)

B. \(\displaystyle  \int\limits_{\frac{\pi }{4}}^1 {\frac{{\tan x}}{x}dx}  > \int\limits_{\frac{\pi }{4}}^1 {\frac{{\cot x}}{x}dx} \)

C. \(\displaystyle  \int\limits_0^{\frac{\pi }{4}} {{{\sin }^4}xdx}  < \int\limits_0^{\frac{\pi }{2}} {dx} \)

D. \(\displaystyle  \int\limits_1^e {\frac{{\ln x}}{x}dx}  < \int\limits_1^e {\frac{{{e^x}}}{x}dx} \)

Phương pháp giải - Xem chi tiết

Sử dụng ý nghĩa hình học của tích phân: Nếu \(\displaystyle  f\left( x \right) \ge 0,\forall x \in \left[ {a;b} \right]\) thì \(\displaystyle  S = \int\limits_a^b {f\left( x \right)dx}  \ge 0\).

Lời giải chi tiết

Đáp án A:

Xét \(\displaystyle  I = \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  - \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \) \(\displaystyle   = \int\limits_{\frac{\pi }{2}}^\pi  {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx} \)

Dễ thấy trên đoạn \(\displaystyle  \left[ {\frac{\pi }{2};\pi } \right]\) thì \(\displaystyle  x > 0\) và \(\displaystyle  \sin x > 0 > \cos x\) \(\displaystyle   \Rightarrow \sin x - \cos x > 0\)

Suy ra \(\displaystyle  \frac{{\sin x - \cos x}}{x} > 0\) \(\displaystyle   \Rightarrow I = \int\limits_{\frac{\pi }{2}}^\pi  {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx}  > 0\)

\(\displaystyle   \Rightarrow \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\sin x}}{x}dx}  > \int\limits_{\frac{\pi }{2}}^\pi  {\frac{{\cos x}}{x}dx} \).

Vậy A sai.

Chọn A.

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved