Danh Mục

Bài 3.29 trang 174 SBT giải tích 12


Giải bài 3.29 trang 174 sách bài tập giải tích 12. Đối với tích phân...

Đề bài

Đối với tích phân \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan x}}{{{{\cos }^2}x}}dx} \), thực hiện đổi biến số \(t = \tan x\) ta được:

A. \(\int\limits_0^{\dfrac{\pi }{4}} {tdt} \)                 B. \(\int\limits_{ - 1}^0 {tdt} \)

C. \(\int\limits_0^1 {tdt} \)                   D. \( - \int\limits_0^1 {tdt} \)

Phương pháp giải - Xem chi tiết

Tính \(dt\) và đổi cận suy ra tích phân mới.

Lời giải chi tiết

Đặt \(t = \tan x\)\( \Rightarrow dt = \dfrac{1}{{{{\cos }^2}x}}dx\).

Đổi cận \(x = 0 \Rightarrow t = 0,\) \(x = \dfrac{\pi }{4} \Rightarrow t = 1\).

Khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan x}}{{{{\cos }^2}x}}dx}  = \int\limits_0^1 {tdt} \).

Chọn C.

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved