Bài 1: Tổng các góc trong một tam giác
Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3: Hai tam giác bằng nhau
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc
Bài 7: Tam giác cân
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Bài 1: Tổng các góc trong một tam giác
Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3: Hai tam giác bằng nhau
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc
Bài 7: Tam giác cân
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7
Đề bài

Phương pháp giải - Xem chi tiết
Ta tìm số ? thích hợp bằng cách thực hiện các phép tính dựa vào:
\({x^m}.{x^n} = {x^{m + m}}\);
\({x^m}:{x^n} = {x^{m - n}}\)(x ≠ 0; m ≥ n);
\({\left( {{x^m}} \right)^n} = {x^{m.n}}\).
Lời giải chi tiết
a) \({\left[ {{{\left( {0,5} \right)}^3}} \right]^4} = {\left( {0,5} \right)^{12}}\);
b) \({\left[ {{{\left( {3,57} \right)}^3}} \right]^0} = 1\);
c) \({\left[ {{{\left( { - \dfrac{5}{7}} \right)}^2}} \right]^6} = {\left( { - \dfrac{5}{7}} \right)^{12}}\);
d) \(\dfrac{{16}}{{81}} = {\left( { - \dfrac{2}{3}} \right)^4}\).
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.