Giải bài 1.5 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức


Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X.

Đề bài

Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. 

Phương pháp giải - Xem chi tiết

Bước 1: Tính xác suất của các biến cố

Bước 2: Lập bảng phân bố xác suất

Lời giải chi tiết

X là kết quả thu được khi cộng hai số trên hai quả cầu với nhau.

Khi đó giá trị của X thuộc tập {2; 3; 4; 5; 6; 7}.

Gọi \({A_{ij}}\) là biến cố: “Lấy ngẫu nhiên đồng thời 2 quả cầu trong đó một quả cầu ghi số i và một quả cầu ghi số j”. với \(1 \le i \le 4;1 \le j \le 4\)

\(\begin{array}{l}P\left( {X = 2} \right) = P({A_{11}}) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{6}{{45}}\\P\left( {X = 3} \right) = P({A_{12}}) = \frac{{C_4^1.C_3^1}}{{C_{10}^2}} = \frac{{12}}{{45}}\\P\left( {X = 4} \right) = P({A_{13}}) + P({A_{22}}) = \frac{{C_4^1.C_2^1}}{{C_{10}^2}} + \frac{{C_3^2}}{{C_{10}^2}} = \frac{{11}}{{45}}\\P\left( {X = 5} \right) = P({A_{14}}) + P({A_{23}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1.C_2^1}}{{C_{10}^2}} = \frac{{10}}{{45}}\\P\left( {X = 6} \right) = P({A_{33}}) + P({A_{24}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1C_2^1}}{{C_{10}^2}} = \frac{4}{{45}}\\P\left( {X = 7} \right) = P({A_{34}}) = \frac{{C_2^1.C_1^1}}{{C_{10}^2}} = \frac{2}{{45}}\end{array}\)

Bảng phân bố xác suất của X là


© 2025 Luyện Thi 24/7. All Rights Reserved