Danh Mục

Bài 14 trang 233 SBT đại số và giải tích 11


Giải bài 14 trang 233 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy tính giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } {x_n}\).

LG a

\({x_n} = \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}}  + 1} \right)}}\\ = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}}  + 1}} = \frac{1}{{1 + 1}}\\ = \frac{1}{2}\end{array}\)

Quảng cáo

Lộ trình SUN 2026

LG b

\({x_n} = \sqrt[3]{{1 + {n^3}}} - n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{1 + {n^3}}} - n} \right)\\ = \lim \frac{{\left( {1 + {n^3}} \right) - {n^3}}}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + \sqrt[3]{{1 + {n^3}}}.n + {n^2}}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + n.\sqrt[3]{{1 + {n^3}}} + {n^2}}}\\ = 0\end{array}\)

LG c

\({x_n} = {n^2}\left( {n - \sqrt {{n^2} + 1} } \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left[ {{n^2}\left( {n - \sqrt {{n^2} + 1} } \right)} \right]\\ = \lim \frac{{{n^2}.\left[ {{n^2} - \left( {{n^2} + 1} \right)} \right]}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \frac{{{n^2}.\left( { - 1} \right)}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \left[ { - n.\frac{n}{{n + \sqrt {{n^2} + 1} }}} \right]\\ = \lim \left[ { - n.\frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }}} \right]\\ =  - \infty \end{array}\)

Vì \(\lim \left( { - n} \right) =  - \infty \); \(\lim \frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2} > 0\).

LG d

\({x_n} = \sqrt[3]{{{n^2} - {n^3}}} + n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{{n^2} - {n^3}}} + n} \right)\\ = \lim \frac{{{n^2} - {n^3} + {n^3}}}{{{{\left( {\sqrt[3]{{{n^2} - {n^3}}}} \right)}^2} - n.\sqrt[3]{{{n^2} - {n^3}}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}}} \right)}^2} - n.\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {n\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - n.n\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - {n^2}\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}\left[ {{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1} \right]}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1}}\\ = \frac{1}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}} = \frac{1}{3}\end{array}\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved