Danh Mục

Bài 1.1 trang 10 SBT hình học 11


Giải bài 1.1 trang 10 sách bài tập hình học 11. Trong mặt phẳng tọa độ Oxy cho...

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ \(Oxy\) cho \(\vec v=(2;-1)\), điểm \(M=(3;2)\). Tìm tọa độ của các điểm \(A\) sao cho :

LG a

\(A=T_{\vec v}(M)\)

Phương pháp giải:

Sử dụng biểu thức tọa độ của phép tịnh tiến:

Trong mặt phẳng \(Oxy\) cho điểm \(M(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’=(x’;y’)=T_{\vec v}(M)\).

Khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

Lời giải chi tiết:

Giả sử \(A=(x;y)\).

Theo đề cho \(A=T_{\vec v}(M)\) khi đó \(\left\{ \begin{array}{l}x = 3 + 2\\y = 2 - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\)

Vậy \(A(5;1)\).

Quảng cáo

Lộ trình SUN 2026

LG b

\(M=T_{\vec v}(A)\). 

Phương pháp giải:

Sử dụng biểu thức tọa độ của phép tịnh tiến:

Trong mặt phẳng \(Oxy\) cho điểm \(M(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’=(x’;y’)=T_{\vec v}(M)\).

Khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

Lời giải chi tiết:

Giả sử \(A=(x;y)\).

Theo đề cho \(M=T_{\vec v}(A)\) khi đó \(\) \(\left\{ \begin{array}{l}3 = x + 2\\2 = y - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\)

Vậy \(A(1;3)\).

 Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved