Bài 1: Hình hộp chữ nhật - Hình lập phương
Bài 2: Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
Bài 3: Hình lăng trụ đứng tam giác - Hình lăng trụ đứng tứ giác
Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Bài tập cuối chương 3
Bài 1. Góc và cạnh của một tam giác
Bài 2. Tam giác bằng nhau
Bài 3. Tam giác cân
Bài 4: Đường vuông góc và đường xiên
Bài 5: Đường trung trực của một đoạn thẳng
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8: Tính chất ba đường cao của tam giác
Bài 9: Tính chất ba đường phân giác của tam giác
Bài tập cuối chương 8
Bài 1: Hình hộp chữ nhật - Hình lập phương
Bài 2: Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
Bài 3: Hình lăng trụ đứng tam giác - Hình lăng trụ đứng tứ giác
Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Bài tập cuối chương 3
Bài 1. Góc và cạnh của một tam giác
Bài 2. Tam giác bằng nhau
Bài 3. Tam giác cân
Bài 4: Đường vuông góc và đường xiên
Bài 5: Đường trung trực của một đoạn thẳng
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8: Tính chất ba đường cao của tam giác
Bài 9: Tính chất ba đường phân giác của tam giác
Bài tập cuối chương 8
Đề bài
Rút gọn biểu thức: M =\(\sqrt {{a^2}} \)
Phương pháp giải - Xem chi tiết
Ta sử dụng định nghĩa về căn bậc 2 để rút gọn biểu thức M, ta cần chia 2 trường hợp cho số trong căn lớn và nhỏ hơn 0.
Lời giải chi tiết
TH1 : Nếu a < 0 thì –a > 0, ta có : \({\left( { - a} \right)^2} = {a^2}\)nên \(\sqrt {{a^2}} = - a\)
TH2 : Nếu a \( \ge \) 0, ta có : \(\sqrt {{a^2}} = a\)
Vậy M = \(\sqrt {{a^2}} = \left| a \right|\)khi a < 0 và a > 0
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.