Danh Mục

Câu 6.54 trang 205 SBT Đại số 10 Nâng cao


Giải bài tập Câu 6.54 trang 205 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh

LG a

\(\dfrac{{\sin x + \sin y}}{2} \le \sin \dfrac{{x + y}}{2}\) với mọi \(x, y\) đều không âm và \(x + y \le 2\pi \).

Lời giải chi tiết:

\(\dfrac{{\sin x + \sin y}}{2} = \sin \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}\\ \le \sin \dfrac{{x + y}}{2}\).

(Với chú ý rằng \(\sin \dfrac{{x + y}}{2} \ge 0\) do\(0 \le \dfrac{{x + y}}{2} \le \pi \) và \(\cos \dfrac{{x - y}}{2} \le 1\))

LG b

 \(\dfrac{{\cos x + \cos y}}{2} \le \cos \dfrac{{x + y}}{2}\) với mọi \(x, y\) thỏa mãn \( - \pi  \le x + y \le \pi \).

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{{\cos x + \cos y}}{2} = \cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)\\ - \pi  \le x + y \le \pi  \Rightarrow \dfrac{{ - \pi }}{2} \le \dfrac{{x + y}}{2} \le \dfrac{\pi }{2}\\ \Rightarrow \left\{ \begin{array}{l}0 \le \cos \dfrac{{x + y}}{2}\\\cos \dfrac{{x - y}}{2} \le 1\end{array} \right.\\ \Rightarrow \dfrac{{\cos x + \cos y}}{2} \le \cos \dfrac{{x + y}}{2}\end{array}\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved