Danh Mục

Câu 4.98 trang 118 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.98 trang 118 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Xét dấu các biểu thức sau :

 

LG a

 \(\dfrac{{7x - 4}}{{8x + 5}} - 2\)

 

Lời giải chi tiết:

Nếu đặt \(f\left( x \right) = \dfrac{{7x - 4}}{{8x + 5}} - 2\) thì

\(\begin{array}{l}f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \dfrac{{14}}{9}; - \dfrac{5}{8}} \right)\\f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{{14}}{9}} \right) \cup \left( { - \dfrac{5}{8}; + \infty } \right).\end{array}\)

 

LG b

 \(\dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\)

 

Lời giải chi tiết:

Nếu đặt \(g\left( x \right) = \dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\) thì

\(\begin{array}{l}g\left( x \right) < 0 \Leftrightarrow x \in \left( { - 4; - 1} \right) \cup \left( {1;4} \right)\\g\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 4} \right) \cup \left( { - 1;1} \right) \cup \left( {4; + \infty } \right).\end{array}\)

 

LG c

 \(\dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\)

 

Lời giải chi tiết:

Nếu đặt \(h\left( x \right) = \dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\) thì

\(\begin{array}{l}h\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{1}{5}} \right) \cup \left( {\dfrac{2}{3}; + \infty } \right)\\h\left( x \right) < 0 \Leftrightarrow x \in \left( { - \dfrac{1}{5};\dfrac{2}{3}} \right).\end{array}\)

 

LG d

\(\dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\)

 

Lời giải chi tiết:

Nếu đặt \(p\left( x \right) = \dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\) thì \(p(x) > 0\) khi và chỉ khi

\(x \in \left( { - \sqrt {12} , - \sqrt 5 } \right) \cup \left( {0;4 - \sqrt {11} } \right)\)\( \cup \left( {\sqrt 5 ;\sqrt {12} } \right)\)\( \cup \left( {4 + \sqrt {11} ; + \infty } \right).\)

\(p(x) < 0\) khi và chỉ khi

\(x \in \left( { - \infty ; - \sqrt {12} } \right) \cup \left( { - \sqrt 5 ;0} \right)\)\( \cup \left( {4 - \sqrt {11} ;\sqrt 5 } \right) \cup \left( {\sqrt {12} ;4 + \sqrt {11} } \right).\) 

Loigiaihay.com

 

© 2025 Luyện Thi 24/7. All Rights Reserved