Danh Mục

Câu 4.7 trang 103 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.7 trang 103 SBT Đại số 10 Nâng cao.

Đề bài

Chứng minh rằng

\({x^n} + 1 \ge 0\) với mọi \(x ≥ -1, n ∈ N^*\).

Lời giải chi tiết

Nếu \(x ≥ 0\) thì \({x^n} + 1 \ge 1 > 0\)

Nếu \(-1 ≤ x ≤ 0\) thì \(|x| ≤ 1\) suy ra \({\left| x \right|^n} \le 1\) hay \(\left| {{x^n}} \right| \le 1.\)

Từ đó ta có \( - {x^n} \le 1\,\left( {vi\, - {x^n} \le \left| {{x^n}} \right|} \right).\)

Vì vậy \({x^n} + 1 \ge 0\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved