Danh Mục

Câu 4.57 trang 112 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.57 trang 112 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giá trị của m để mỗi biểu thức sau luôn dương:

 

LG a

\({x^2} - 4{ {x + }}m - 5\)

 

Lời giải chi tiết:

Ta có \(\Delta ' = 4 - \left( {m - 5} \right) = 9 - m\) và tam thức có \(a = 1 > 0\). Tam thức luôn dương khi và chỉ khi \(\Delta ' = 9 - m < 0 \Leftrightarrow m > 9.\)

 

LG b

\({x^2} - \left( {m + 2} \right)x + 8\,m + 1\)

 

Lời giải chi tiết:

Tam thức đã cho có biệt thức

\(\Delta  = {\left( {m + 2} \right)^2} - 4\left( {8m + 1} \right) \)

\(= {m^2} - 28m= m\left( {m - 28} \right)\) và \(a = 1\).

Tam thức luôn dương khi và chỉ khi:

\(\Delta  = m\left( {m - 28} \right) < 0 \Leftrightarrow 0 < m < 28.\)

 

LG c

\({x^2} + 4{ {x}} + {\left( {m - 2} \right)^2}\)

 

Lời giải chi tiết:

Ta có \(\Delta ' = 4 - {\left( {m - 2} \right)^2} =  - {m^2} + 4m\) và hệ số \(a = 1\). Tam thức luôn dương khi và chỉ khi \(\Delta  =  - {m^2} + 4m < 0 \Leftrightarrow m > 4\) hoặc \(m < 0\).

 

LG d

\(\left( {3m + 1} \right){x^2} - \left( {3m + 1} \right)x + m + 4.\)

 

Lời giải chi tiết:

*) Nếu \(3m + 1 = 0\) thì \(m =  - \dfrac{1}{3}.\) Khi đó biểu thức luôn dương với mọi \(x\).

*) Nếu \(m \ne  - \dfrac{1}{3}\) thì tam thức đã cho có biệt thức

\(\begin{array}{l}\Delta  = {\left( {3m + 1} \right)^2} - 4\left( {m + 4} \right)\left( {3m + 1} \right)\\ = \left( {3m + 1} \right)\left( { - m - 15} \right)\\ =  - 3{m^2} - 46m - 15\\ =  - \left( {3{m^2} + 46m + 15} \right).\end{array}\)

Tam thức luôn dương khi và chỉ khi

\(\eqalign{& \left\{ \matrix{a = 3m + 1 > 0 \hfill \cr \Delta < 0 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{
m > {{ - 1} \over 3} \hfill \cr \left( {3m + 1} \right)\left( {m + 15} \right) > 0 \hfill \cr} \right.\,\,\,\left( * \right) \cr} \)

\(\Leftrightarrow m >  - {1 \over 3}\) hoặc \(m <  - 15\)

Kết hợp với (*) suy ra \(m >  - \dfrac{1}{3}.\) Tóm lại với \(m \ge  - \dfrac{1}{3}\) thì biểu thức luôn dương với mọi \(x\).

Loigiaihay.com

 

© 2025 Luyện Thi 24/7. All Rights Reserved