Danh Mục

Câu 3.46 trang 65 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.46 trang 65 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình bậc nhất ba ẩn :


LG a

 \(\left\{ {\begin{array}{*{20}{c}}{x + y = 25}\\{y + z = 30}\\{z + x = 29}\end{array}} \right.\)

Lời giải chi tiết:

\(\left( {{{x}};y;z} \right) = \left( {12;13;17} \right).\) Gợi ý. Cộng vế với vế của ba phương trình trong hệ, dẫn đến

\(x + y + {\rm{z}} = 42.\)

Từ đó dễ dàng suy ra \(x = 12 ; y = 13 ; z = 17.\)

LG b

\(\left\{ {\begin{array}{*{20}{c}}{2x + y + 3z = 2}\\{ - x + 4y - 6z = 5}\\{5x - y + 3z =  - 5}\end{array}} \right.\)

Lời giải chi tiết:

\(\left( {{\rm{x}};y;z} \right) = \left( { - 1;2;\dfrac{2}{3}} \right).\)

Gợi ý.

\(\eqalign{& \left\{ {\matrix{{2{\rm{x}} + y + 3{\rm{z}} = 2} \cr { - x + 4y - 6{\rm{z}} = 5} \cr {5{\rm{x}} - y + 3{\rm{z}} = - 5} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{ - x + 4y - 6{\rm{z}} = 5} \cr { - 3{\rm{x}} + 2y = 7} \cr {8y = 16} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{z = {2 \over 3}} \cr {x = - 1} \cr {y = 2} \cr} } \right. \cr} \)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved