Danh Mục

Câu 3.28 trang 62 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.28 trang 62 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình :

LG a

\(\sqrt {{x^2} + x + 1}  = 3 - x\)

Lời giải chi tiết:

\(x = 1\dfrac{1}{7}\)

LG b

\(\sqrt {{x^2} + 6x + 9}  = \left| {2x - 1} \right|\)

Lời giải chi tiết:

\(\eqalign{
& \sqrt {{{\left( {x + 3} \right)}^2}} = \left| {2x - 1} \right| \cr 
& \Leftrightarrow \left| {x + 3} \right| = \left| {2x - 1} \right| \cr 
& \Leftrightarrow x + 3 = 2x - 1\, \cr} \)

hoặc \(x + 3 = 1 - 2x \Leftrightarrow x = 4\) hoặc \(x =  - {2 \over 3}.\)

LG c

 \(x\left( {x + 1} \right) + x\left( {x + 2} \right) = x\left( {x + 4} \right)\)

Lời giải chi tiết:

Biến đổi phương trình về dạng \(x\left( {x - 1} \right) = 0,\) do đó \(x = 0\) hoặc \(x = 1\)

LG d

\(\left( {\dfrac{{1 + x}}{{1 - x}} - \dfrac{{1 - x}}{{1 + x}}} \right):\left( {\dfrac{{1 + x}}{{1 - x}} - 1} \right) \\= \dfrac{3}{{14 - x}}\)

Lời giải chi tiết:

 Điều kiện : \(x ≠ ± 1, x ≠ 14, x ≠ 0\). Ta có :

\(\dfrac{{{{\left( {1 + x} \right)}^2} - {{\left( {1 - x} \right)}^2}}}{{1 - {x^2}}}.\dfrac{{1 - x}}{{2x}} = \dfrac{3}{{14 - x}}\)

\(\Leftrightarrow \dfrac{2}{{1 + x}} = \dfrac{3}{{14 - x}}\)

\( \Leftrightarrow 5x = 25 \Leftrightarrow x = 5\) (thỏa mãn điều kiện).

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved