Danh Mục

Câu 3.22 trang 61 SBT Đại số 10 Nâng cao


Giải bài tập Câu 3.22 trang 61 SBT Đại số 10 Nâng cao

Đề bài

Tìm tất cả các giá trị dương của k để các nghiệm của phương trình

\(2{x^2} - \left( {k + 2} \right)x + 7 = {k^2}\)

Trái dấu nhau và có giá trị tuyệt đối là nghịch đảo của nhau.

Lời giải chi tiết

k = 3.

Gợi ý. Gọi \({x_1},{x_2}\) là nghiệm của phương trình.

Áp dụng định lí Vi-ét và theo yêu cầu bài toán ta có \({x_2} =  - \dfrac{1}{{{x_1}}}\) và

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = {x_1} - \dfrac{1}{{{x_1}}} = \dfrac{{k + 2}}{2}}\\{{x_1}{x_2} = {x_1}\left( {\dfrac{{ - 1}}{{{x_1}}}} \right) =  - 1 = \dfrac{{7 - {k^2}}}{2}.}\end{array}} \right.\)

Từ \(\dfrac{{7 - {k^2}}}{2} =  - 1\) ta có \({k^2} = 9,\) do k > 0 nên k = 3.

Với k = 3 nghiệm của phương trình là \({x_1} = \dfrac{{5 - \sqrt {41} }}{4},{x_2} = \dfrac{{5 + \sqrt {41} }}{4}\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved