Danh Mục

Câu 18 trang 240 SBT Đại số 10 Nâng cao


Giải bài tập Câu 18 trang 240 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba số dương a, b, c. Chứng minh rằng:

 

LG a

\(ac + \dfrac{b}{c} \ge 2\sqrt {ab} ;\)

 

Lời giải chi tiết:

 Với \(a > 0,b > 0,c > 0\) ta có

\(ac + \dfrac{b}{c} \ge 2\sqrt {ac.\dfrac{b}{c}}  = 2\sqrt {ab} .\)

Đẳng thức xảy ra khi \(ac = \dfrac{b}{c}\) hay \(b = a{c^2}.\)

 

LG b

\(\dfrac{a}{{\sqrt b }} + \dfrac{b}{{\sqrt a }} \ge 2\sqrt[4]{{ab}}\)

Trong mỗi bất đẳng thức trên, dấu bằng xảy ra khi nào?

 

Lời giải chi tiết:

\(\dfrac{a}{{\sqrt b }} + \dfrac{b}{{\sqrt a }} \ge 2\sqrt {\dfrac{{ab}}{{\sqrt {ab} }}}  = 2\sqrt[4]{{ab}}\).

Đẳng thức xảy ra khi \(a = b\).

Loigiaihay.com

 

© 2025 Luyện Thi 24/7. All Rights Reserved