Danh Mục

Câu 15 trang 240 SBT Đại số 10 Nâng cao


Giải bài tập Câu 15 trang 240 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

So sánh các số sau đây

 

LG a

 \(\sqrt {2003}  + \sqrt {2004} \) và \(\sqrt {2000}  + \sqrt {2007} \)

 

Lời giải chi tiết:

 \(\sqrt {2003}  + \sqrt {2004}  > \sqrt {2000}  + \sqrt {2007} ;\)

 

LG b

 và \(\sqrt n  + \sqrt {n + 7} \)

 

Lời giải chi tiết:

\(\sqrt {n + 3}  + \sqrt {n + 4}  > \sqrt n  + \sqrt {n + 7} \left( {n \ge 0} \right)\);

 

LG c

\(\sqrt a  + \sqrt b \) và \(\sqrt {a - c}  + \sqrt {b + c} \), với \(b > a > c > 0\).

 

Lời giải chi tiết:

 Nhận thấy \({\left( {\sqrt a  + \sqrt b } \right)^2} = a + b + 2\sqrt {ab} \)

\({\left( {\sqrt {a - c}  + \sqrt {b + c} } \right)^2} = a + b + 2\sqrt {\left( {a - c} \right)\left( {b + c} \right)} ;\)

Do \(\left( {a - c} \right)\left( {b + c} \right) = ab + c\left( {a - b - c} \right) < ab\) (vì \(b > a > c > 0\))

nên \(2\sqrt {\left( {a - c} \right)\left( {b + c} \right)}  < 2\sqrt {ab} .\) Vì vậy \(\sqrt a  + \sqrt b  > \sqrt {a - c}  + \sqrt {b + c} .\)

Loigiaihay.com

 

© 2025 Luyện Thi 24/7. All Rights Reserved