Cho tứ diện \(ABCD\). Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(MB = 2MC\).
Xem chi tiết
Cho tứ diện \(ABCD\). Trên cạnh \(CD\) lấy hai điểm \(M\) và \(N\) khác nhau
Cho mặt phẳng \(\left( P \right)\), ba điểm \(A\), \(B\), \(C\) không thẳng hàng và không nằm trên \(\left( P \right)\).
Quảng cáo
Cho hình chóp \(S.ABCD\). Gọi \(M\) là trung điểm của cạnh \(SD\).
Cho tứ diện \(ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(AD\); \(P\), \(Q\)
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BC\), \(B'C'\).
Cho hình chóp \(S.ABCD\) đáy là hình bình hành. Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(SB\), \(BC\), \(CD\).
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(AD\), \(B'C'\), \(DD'\).
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO! ✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích. ✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.