Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Đề bài
Cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC).
Trên nửa mặt phẳng bờ AC không chứa điểm B, qua điểm C vẽ tia Cx vuông góc với CA và cắt tia BD tại E. Chứng minh chu vi tam giác ADB nhỏ hơn chu vi tam giác CDE.
Lời giải chi tiết
∆ABC vuông tại A. Ta có \(AB \bot AC\) tại A => AB < BC
Trên cạnh BC lấy điểm M sao cho BM = AB
Xét ∆MBD và ∆ABD có: \(\widehat {MBD} = \widehat {ABD}\) (BD là đường phân giác)
MB = AB
BD (cạnh chung)
Do đó ∆MBD = ∆ABD (c.g.c) \( \Rightarrow \widehat {BMD} = \widehat {BAD} = 90^\circ ,AD = MD\)
\(DM \bot BC\) tại M => DM < CD. Nên AD < CD
Mặt khác
\(AB \bot AC,EC \bot AC\)
\( \Rightarrow AB//EC \Rightarrow \widehat {CEB} = \widehat {ABD}\) (so le trong)
Ta có \(\widehat {CEB} = \widehat {MBD}( = \widehat {ABD)}\) => ∆CBE cân tại C => BC = CE
Nên AB < BC = CE
∆ABD vuông tại A => BD2 = AD2 + AB2 (định lí Pythagore)
∆CDE vuông tại E => DE2 = CD2 + CE2
Mà AD < CD và AB < CE. Do đó
BD2 < DE2 => BD < DE
Ta có AD + AB + BD < CD + CE + DE
Vậy chu vi tam giác ADB nhỏ hơn chu vi tam giác CDE.
Loigiaihay.com
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.