Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Đề bài
Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N.
a) Chứng minh rằng \(\widehat {BMN} = \widehat {HAC}\)
b) Kẻ \(MI \bot AH\left( {I \in AH} \right)\) , gọi K là giao điểm của AH với BM. Chứng minh rằng I là trung điểm của AK.
Lời giải chi tiết
a) Ta có MN là đường trung trực của BC (gt) \( \Rightarrow MN \bot BC.\)
Mà \(AH \bot BC\) (AH là đường cao của tam giác ABC). Nên MN // AH.
M thuộc đường trung trực của BC (gt).
=> MB = MC => ∆MBC cân tại M
Do đó MN là đường phân giác của ∆MBC
\( \Rightarrow \widehat {BMN} = \widehat {NMC}.\)
Mà \(\widehat {NMC} = \widehat {HAC}\) (hai góc đồng vị và MN // AH)
Vậy \(\widehat {BMN} = \widehat {HAC}.\)
b) Ta có \(\widehat {BMN} = \widehat {HAC} \Rightarrow \widehat {BMN} = \widehat {KAM}\)
Mà \(\widehat {BMN} = \widehat {AKM}\) (hai góc so le trong và MN // AH). Nên \(\widehat {KAM} = \widehat {AKM}.\)
Do đó ∆AKM cân tại M.
Lại có MI là đường cao của tam giác AKM (\(MI \bot AK\) tại I).
Nên MI cũng là đường trung tuyến của tam giác AKM.
Vậy I là trung điểm của AK.
Loigiaihay.com
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.