Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Chủ đề 3: Tam giác - Tam giác bằng nhau
Chủ đề 4. Tam giác cân - Định lý Pythagore
Ôn tập chương 2 - Hình học 7
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Chủ đề 6 : Các đường đồng quy của tam giác
Ôn tập chương 3 – Hình học
Đề bài
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Tia phân giác của góc HAC cắt BC tại D. Lấy \(K \in AB\) sao cho BK = BH. Chứng minh rằng : KH // AD.
Lời giải chi tiết

Ta có: BK = BH (giả thiết) => tam giác BHK cân tại B \(\Rightarrow \widehat {BKH} = \widehat {BHK}\)
Mà \(\widehat {KBH} + \widehat {BHK} + \widehat {BKH} = {180^0}\) (tổng ba góc trong một tam giác)
Nên \(\eqalign{ & \widehat {BHK} + \widehat {BHK} + \widehat {KBH} = {180^0} \cr & \Rightarrow 2\widehat {BHK} + \widehat {KBH} = {180^0} \Rightarrow \widehat {BHK} = {{{{180}^0} - \widehat {KBH}} \over 2}(1) \cr} \)
Mặt khác \(\widehat {BAD} + \widehat {DAC} = \widehat {BAC} = {90^0} \Rightarrow \widehat {BAD} = {90^0} - \widehat {DAC}.\)
Và \(\widehat {BDA} + \widehat {HAD} = {90^0}(\Delta HAD\) vuông tại H) \(\Rightarrow \widehat {BAD} = {90^0} - \widehat {HAD}\)
Mà \(\widehat {DAC} = \widehat {HAD}\) (AD là tia phân giác của góc HAC). Do đó: \(\widehat {BAD} = \widehat {BDA}\)
Tam giác ABD có: \(\widehat {KBH} + \widehat {BAD} + \widehat {BDA} = {180^0}.\)
Do đó: \(\widehat {BDA} = {{{{180}^0} - \widehat {KBH}} \over 2}(2)\)
Từ (1) và (2) ta có: \(\widehat {BHK} = \widehat {BDA}\)
Mà góc BHK và BDA đồng vị. Vậy KH // AD.
Loigiaihay.com
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.