Danh Mục

Bài 86 trang 51 SBT Hình học 10 Nâng cao


Giải bài tập Bài 86 trang 51 SBT Hình học 10 Nâng cao

Đề bài

Cho tam giác \(ABC\) có \(\widehat A = {60^0} ,  a = 10 ,  r = \dfrac{{5\sqrt 3 }}{3}\).

a) Tính \(R.\)

b) Tính \(b, c.\)

Lời giải chi tiết

 

a) Ta có

\(2R = \dfrac{a}{{\sin A}} = \dfrac{{10}}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{20\sqrt 3 }}{3} \)

\( \Rightarrow  R = \dfrac{{10\sqrt 3 }}{3}\).

b) Gọi \(M, N, P\) lần lượt là các tiếp điểm của \(BC, CA, AB\) với đường tròn nội tiếp tam giác \(ABC\) (h.72).

Ta có \(AP = AN = r.\cot {30^0} = 5 ; \)

\(BP + NC = BM + MC = a = 10\).

Từ đó ta có \((b - AN) + (c - AP) = 10\)  hay  \(b+c=20.\)    (1)

Theo định lí cosin

\({a^2} = {b^2} + {c^2} - 2bc\cos {60^0}\) hay \({a^2} = {(b + c)^2} - 2bc - bc\), suy ra

\(bc = \dfrac{{{{(b + c)}^2} - {a^2}}}{3}\) \( = \dfrac{{{{20}^2} - {{10}^2}}}{3} = 100\)            (2)

Từ (1) và (2) suy ra \(b, c\) là nghiệm của phương trình bậc hai \({x^2} - 20x + 100 = 0\).

Phương trình này có nghiệm kép \(b=c=10\) nên \(ABC\) là tam giác đều.

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved