Danh Mục

Bài 69 trang 49 SBT Hình học 10 Nâng cao


Giải bài tập Bài 69 trang 49 SBT Hình học 10 Nâng cao

Đề bài

Cho tứ giác \(ABCD\) có \(AB = a ,  \widehat {CAB} = \alpha  ,\)\(  \widehat {DBA} = \beta  ,  \widehat {DAC} = \alpha ' ,  \widehat {CBD} = \beta '\). Tính độ dài cạnh \(CD\).

Lời giải chi tiết

(h.62).

 

Tính \(AD\) và \(AC\) như bài 68 ta được

\(AD = \dfrac{{a\sin \beta }}{{\sin (\alpha  + \alpha ' + \beta )}} , \)

\( AC = \dfrac{{a\sin (\beta  + \beta ')}}{{\sin (\alpha  + \beta  + \beta ')}}\).

Sau đó áp dụng đính lí cosin vào tam giác \(ACD\) ta có

\(C{D^2} = A{C^2} + A{D^2} - 2AC.AD.\cos \alpha '\).

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved