Danh Mục

Bài 61 trang 48 SBT Hình học 10 Nâng cao


Giải bài tập Bài 61 trang 48 SBT Hình học 10 Nâng cao

Đề bài

Tam giác \(ABC\) có \(\dfrac{c}{b} = \dfrac{{{m_b}}}{{{m_c}}} \ne 1\). Chứng minh rằng:

\(2\cot A = \cot B + \cot C\).

Lời giải chi tiết

Đẳng thức \(2\cot A = \cot B + \cot C\) tương đương với

\(2.\dfrac{{{b^2} + {c^2} - {a^2}}}{{abc}}R = \dfrac{{{a^2} + {c^2} - {b^2}}}{{abc}}R \)

\(= \dfrac{{{a^2} + {b^2} - {c^2}}}{{abc}}R\)   (theo tính toán như bài 58) hay \({b^2} + {c^2} = 2{a^2}\).

Từ giả thiết suy ra \({c^2}m_c^2 = {b^2}m_b^2\), do đó

\(\begin{array}{l}{c^2}\left( {\dfrac{{{b^2} + {a^2}}}{2} - \dfrac{{{c^2}}}{4}} \right) \\= {b^2}\left( {\dfrac{{{c^2} + {a^2}}}{2} - \dfrac{{{b^2}}}{4}} \right)\\ \Rightarrow   2{b^2}{c^2} + 2{a^2}{c^2} - {c^4}\\ = 2{b^2}{c^2} + 2{a^2}{b^2} - {b^4}.\\ \Rightarrow {b^4} - {c^4} = 2{a^2}({b^2} - {c^2})\end{array}\)

\( \Rightarrow {b^2} + {c^2} = 2{a^2}.\)        (do \({b^2} - {c^2} \ne 0\)).

Ta đi đến điều phải chứng minh.

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved