Danh Mục

Bài 57 trang 109 SBT Hình học 10 Nâng cao


Giải bài tập Bài 57 trang 109 SBT Hình học 10 Nâng cao

Đề bài

Cho \(n\) điểm \({A_1}({x_1} ; {y_1}), {A_2}({x_2} ; {y_2}), ..., {A_n}({x_n} ; {y_n})\) và \(n+1\) số : \(k_1, k_2,…,k_n,\) \(k\) thỏa mãn \({k_1} + {k_2} + ... + {k_n} \ne 0\). Tìm tập hợp các điểm \(M\) sao cho

\({k_1}MA_1^2 + {k_2}MA_2^2 + ... + {k_n}MA_n^2 = k\).

Lời giải chi tiết

Đặt \(M=(x, y)\), ta có \({k_1}MA_1^2 + {k_2}MA_2^2 + ... + {k_n}MA_n^2 = k\)

\(\begin{array}{l} \Leftrightarrow   [{k_1}{(x - {x_1})^2} + {k_2}{(x - {x_2})^2}\\ + ... + {k_n}{(x - {x_n})^2}] + [{k_1}{(y - {y_1})^2} \\+ {k_2}{(y - {y_2})^2} + ... + {k_n}{(y - {y_n})^2}]\\ \Leftrightarrow   ({k_1} + {k_2} + ... + {k_n})({x^2} + {y^2}) \\- 2({k_1}{x_1} + {k_2}{x_2} + ... + {k_n}{x_n})x\\ - 2({k_1}{y_1} + {k_2}{y_2} + ... + {k_n}{y_n})y\\ + {k_1}(x_1^2 + y_1^2) + {k_2}(x_2^2 + y_2^2) \\+ ... + {k_n}(x_n^2 + y_n^2) = k.\end{array}\)

Đặt

\(\begin{array}{l}a =  \dfrac{{{k_1}{x_1} + {k_2}{x_2} + ... + {k_n}{x_n}}}{{{k_1} + {k_2} + ... + {k_n}}}  ;\\   b =  \dfrac{{{k_1}{y_1} + {k_2}{y_2} + ... + {k_n}{y_n}}}{{{k_1} + {k_2} + ... + {k_n}}}  ;\\c =  \dfrac{{{k_1}(x_1^2 + y_1^2) + {k_2}(x_2^2 + y_2^2) + ... + {k_n}(x_n^2 + y_n^2) - k}}{{{k_1} + {k_2} + ... + {k_n}}}.\end{array}\)

Khi đó

\((1)    \Leftrightarrow   {x^2} + {y^2} - 2ax - 2by + c = 0   \)

\(\Leftrightarrow    {(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.\)

-  Nếu \({a^2} + {b^2} - c > 0\) thì tập hợp các điểm \(M\) là đường tròn tâm \(I(a, b)\), bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).

- Nếu \({a^2} + {b^2} - c = 0\) thì tập hợp các điểm \(M\) là điểm \(I(a, b).\)

- Nếu \({a^2} + {b^2} - c < 0\) thì tập các điểm \(M\) là tập rỗng.

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved