Danh Mục

Bài 55 trang 47 SBT Hình học 10 Nâng cao


Giải bài tập Bài 55 trang 47 SBT Hình học 10 Nâng cao

Đề bài

Tam giác \(ABC\) có \(\widehat B = {60^0}; \widehat C = {45^0}; BC = a\).

a) Tính độ dài hai cạnh \(AB, AC.\)

b) Chứng minh \(\cos {75^0} = \dfrac{{\sqrt 6  - \sqrt 2 }}{4}\).

Lời giải chi tiết

 

a) Ta có \(\widehat A = {180^0} - ({60^0} + {45^0}) = {75^0}.\)

Đặt \(AC=b, AB=c\). Theo định lí hàm sớ sin:

\(\dfrac{b}{{\sin {{60}^o}}} = \dfrac{a}{{\sin {{75}^0}}} = \dfrac{c}{{{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}}\).

Suy ra \(b = \dfrac{{a\sqrt 3 }}{{2\sin {{75}^0}}}  ;   c = \dfrac{{a\sqrt 2 }}{{2\sin {{75}^0}}}.\)

b) Kẻ \(AH \bot BC\) (h.52), do \(\widehat B, \widehat C\) đều là góc nhọn nên \(H\) thuộc đoạn \(BC\), hay \(BC=HB+HC\). Ta có

\(\begin{array}{l}\left\{ \begin{array}{l}HC = \dfrac{{b\sqrt 2 }}{2}\\HB = \dfrac{c}{2}\end{array} \right.\\ \Rightarrow  a = HC + HB = b\dfrac{{\sqrt 2 }}{2} + \dfrac{c}{2} \\= \dfrac{{a\sqrt 6  + a\sqrt 2 }}{{4.\sin {{75}^0}}}   \\ \Rightarrow   \sin {75^0} = \dfrac{{\sqrt 6  + \sqrt 2 }}{4}.\\\cos {75^0} = \sqrt {1 - {{\sin }^2}{{75}^0}}\\  = \sqrt {1 - {{\left( {\dfrac{{\sqrt 6  + \sqrt 2 }}{4}} \right)}^2}} \\ = \dfrac{1}{4}\sqrt {8 - 2\sqrt {12} } \\ = \dfrac{1}{4}\sqrt {{{\left( {\sqrt 6  - \sqrt 2 } \right)}^2}}  = \dfrac{{\sqrt 6  - \sqrt 2 }}{4}\end{array}\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved