Danh Mục

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho hình chóp tam giác đều (S.ABC) cạnh đáy bằng (2a) và chiều cao bằng (asqrt 2 ).

Đề bài

Cho hình chóp tam giác đều \(S.ABC\) cạnh đáy bằng \(2a\) và chiều cao bằng \(a\sqrt 2 \). Khoảng cách từ tâm \(O\) của đáy \(ABC\) đến một mặt bên là

A. \(\frac{{a\sqrt {14} }}{7}\).                          

B. \(\frac{{a\sqrt 2 }}{7}\).       

C. \(\frac{{a\sqrt {14} }}{2}\).

D. \(\frac{{2a\sqrt {14} }}{7}\).

Phương pháp giải - Xem chi tiết

Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi \(I\) là trung điểm của \(BC\), kẻ \(OH \bot SI\left( {H \in SI} \right)\).

\(ABC\) là tam giác đều \( \Rightarrow AI \bot BC\)

\(SO \bot \left( {ABC} \right) \Rightarrow SO \bot BC\)

\( \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot OH\)

Mà \(OH \bot SI\)

\( \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH\)

\(ABC\) là tam giác đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = a\sqrt 3  \Rightarrow OI = \frac{1}{3}AI = \frac{{a\sqrt 3 }}{3}\)

\(SO = a\sqrt 2  \Rightarrow OH = \frac{{SO.OI}}{{\sqrt {S{O^2} + O{I^2}} }} = \frac{{a\sqrt {14} }}{7}\)

Chọn A.


© 2025 Luyện Thi 24/7. All Rights Reserved