Danh Mục

Bài 3 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo


Cho hai biến cố \(A\) và \(B\) độc lập với nhau.

Đề bài

Cho hai biến cố \(A\) và \(B\) độc lập với nhau.

a) Biết \(P\left( A \right) = 0,3\) và \(P\left( {AB} \right) = 0,2\). Tính xác suất của biến cố \(A \cup B\).

b) Biết \(P\left( B \right) = 0,5\) và \(P\left( {A \cup B} \right) = 0,7\). Tính xác suất của biến cố \(A\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)

\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)

b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)

\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)


© 2025 Luyện Thi 24/7. All Rights Reserved