Danh Mục

Bài 17 trang 102 SBT Hình học 10 Nâng cao


Giải bài tập Bài 17 trang 102 SBT Hình học 10 Nâng cao

Đề bài

Cho hai đường thẳng \({d_1}:\,\left\{ \matrix{  x = {x_1} + at \hfill \cr  y = {y_1} + bt \hfill \cr}  \right.\) và \({d_2}:\,\left\{ \matrix{  x = {x_2} + ct'. \hfill \cr  y = {y_2} + dt'. \hfill \cr}  \right.\)

(\(x_1, x_2, y_1, y_2\) là các hằng số).

Tìm điều kiện của \(a, b, c, d\) để hai đường thẳng \(d_1\) và \(d_2\) :

a) Cắt nhau;

b) Song song;   

c) Trùng nhau;

d) Vuông góc với nhau.

Lời giải chi tiết

\(d_1\) đi qua \(M_1(x_1 ; y_1)\) và có vec tơ chỉ phương \(\overrightarrow u (a;b)\), \(d_2\) có vec tơ chỉ phương \(\overrightarrow v (c;d)\).

a) \(d_1\) cắt \(d_2\) \( \Leftrightarrow \overrightarrow u \) và \(\overrightarrow v \) không cùng phương \( \Leftrightarrow \,\,ad - bc \ne 0\).

b) \(d_1//d_2\) \( \Leftrightarrow \overrightarrow u ,\overrightarrow v \) cùng phương  và \({M_1}({x_1};{y_1}) \notin {d_2}\)

\( \Leftrightarrow ad - bc = 0\) và \(d({x_1} - {x_2}) \ne c({y_1} - {y_2})\).

c) \({d_1} \equiv {d_2}\Leftrightarrow \,\,\overrightarrow u ,\,\overrightarrow v \) cùng phương và \({M_1}({x_1}\,;\,{y_1}) \in {d_2}\)

\( \Leftrightarrow \,\,ad - bc = 0\) và \(d({x_1} - {x_2}) = c({y_1} - {y_2})\).

d) \({d_1} \bot {d_2}\Leftrightarrow \,\,\overrightarrow u  \bot \overrightarrow v  \Leftrightarrow ac + bd = 0\).

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved