Danh Mục

Bài 13 trang 40 SBT Hình học 10 Nâng cao


Giải bài tập Bài 13 trang 40 SBT Hình học 10 Nâng cao

Đề bài

Chứng minh công thức sau (với hai  vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) bất kì ):

\(\overrightarrow a .\overrightarrow b  = \dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2}).\)

Lời giải chi tiết

Ta có

\(\dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2})\)

\(= \dfrac{1}{2}({\overrightarrow a ^2} + {\overrightarrow b ^2} + 2\overrightarrow a .\overrightarrow b  - {\overrightarrow a ^2} - {\overrightarrow b ^2}) \)

\(= \overrightarrow a .\overrightarrow b .\)

Loigiaihay.com


© 2025 Luyện Thi 24/7. All Rights Reserved